Abstract: In one example, a system includes a therapy module and a processor. The processor detects a voiding event of a patient and controls the therapy module to deliver electrical stimulation to the patient at a first intensity level for a period of time in response to the detection of the voiding event. Immediately following the period of time, the processor controls the therapy module to increase intensity of the electrical stimulation from the first intensity level to a second intensity level before a subsequent voiding event of the patient by at least controlling the therapy module to deliver stimulation to the patient at a plurality of intermediate intensity levels between the first and second intensity levels prior to delivering stimulation to the patient at the second intensity level following the detection of the voiding event.
Abstract: A lead pin fixture is used to align and hold lead pins in place for brazing lead pins to metal contact pads of a ceramic insulator and brazing a ferrule to the ceramic insulator in a single step.
Type:
Application
Filed:
April 24, 2014
Publication date:
July 23, 2015
Applicant:
Medtronic, Inc.
Inventors:
William M. Brosnan, Rajesh V. Iyer, George C. Johnstone, Susan A. Tettemer, Andrew J. Thom
Abstract: The disclosure describes an introducer for facilitating implantation of therapy elements into a patient. The introducer has an elongated body that defines a lumen for advancement of a therapy element to an implant site, and includes a curved portion medially located between substantially straight proximal and distal portions. As an example, the shape of the introducer may allow a clinician to more easily, and without substantially damaging surrounding tissue, find the correct tissue depth and follow that tissue depth to the implant site. For example, the introducer may facilitate implantation of a therapy element within or between desired layers of tissue of the patient. In some embodiments, fluid may be injected through the introducer to create a space within the tissue to implant the therapy element. Fluid may also be evacuated through the introducer prior to implantation.
Type:
Grant
Filed:
August 27, 2010
Date of Patent:
July 21, 2015
Assignee:
Medtronic, Inc.
Inventors:
Ethan A. Rooney, Gary W. King, Thomas E. Cross, Jr., Richard T. Stone
Abstract: Catheter apparatuses, systems, and methods for achieving renal neuromodulation by intravascular access are disclosed herein. One aspect of the present application, for example, is directed to apparatuses, systems, and methods that incorporate a catheter treatment device comprising an elongated shaft. The elongated shaft is sized and configured to deliver an energy delivery element to a renal artery via an intravascular path. Thermal or electrical renal neuromodulation may be achieved via direct and/or via indirect application of thermal and/or electrical energy to heat or cool, or otherwise electrically modulate, neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers.
Type:
Grant
Filed:
October 21, 2011
Date of Patent:
July 21, 2015
Assignee:
Medtronic Ardian Luxembourg S.a.r.l.
Inventors:
Justin Goshgarian, Benjamin J. Clark, Rajeshkumar Dhamodharasamy, Mark S. Leung, Maria G. Aboytes
Abstract: A method and system for improved lesion creation. The method generally includes positioning a treatment element of a medical device proximate an area of target tissue and operating a control unit in accordance with a duty cycle, that includes at least one freeze-warm cycle, each freeze-warm cycle including: supplying coolant to the treatment element at a first flow rate that causes the treatment element to reach a first temperature, the first temperature causing ablation of the target tissue and cryoadhesion between the treatment element and target tissue, and supplying coolant to the treatment element at a second flow rate that causes the treatment element to reach a second temperature, the second temperature being higher than the first temperature and the second flow rate being lower than the first flow rate, the second temperature being above a temperature at which ablation occurs and below a temperature at which cryoadhesion is broken.
Abstract: Implantable medical devices (IMD) configured for implantation within a recess formed in a cranium of a patient, as well as associated methods, are described. In some embodiments, the IMD includes a top external surface and another adjacent external surface, e.g., a side surface, which are oriented with respect to each other to define an acute angle. A connection module for an electrical lead or catheter may be included on the top external surface. Embodiments of the invention may facilitate implantation of an IMD within a recess formed in the cranium of a patient at a location remote to an incision made in the scalp of the patient.
Abstract: A catheter is disclosed for providing pressure measurements at a vascular lesion. The catheter includes an outer component having a side opening the providing transverse access to a lumen thereof and an inner component slidably disposed within the lumen. The inner component has a guidewire lumen with a proximal side port. When the inner component is longitudinally translated relative to the outer component, the side port of the inner component is accessible through the side opening of the outer component for providing transverse access to a guidewire. A first pressure sensor is disposed proximate of a distal end of the outer component and a second pressure sensor is disposed proximate of a distal end of the inner component, such that relative longitudinal translation between the inner and outer components permits a distance between the first and second pressure sensors to be varied.
Type:
Application
Filed:
January 15, 2014
Publication date:
July 16, 2015
Applicant:
Medtronic Vascular Galway
Inventors:
Gerry McCaffrey, Fiachra Sweeney, Barry O'Connell, Christopher Murphy
Abstract: A tray for loading a medical device on a catheter assembly includes a reservoir and a temperature sensing and indicating device disposed in the reservoir. The reservoir is defined by a bottom surface, a first wall, a second wall, a third wall, and a fourth wall, and includes an open top opposite the bottom surface. The reservoir configured to receive a liquid such that a medical device may be loaded onto a catheter assembly while submerged in the liquid. The temperature sensing and indicating device senses the temperature of the liquid in the reservoir and indicates to the user when the liquid is at a desired temperature for loading the medical device onto the catheter assembly.
Abstract: Implantable medical electrical leads, kits, systems and methods of use thereof for electrically stimulating the spinal cord with a plurality of electric stimulation leads. Directional stimulation electrodes are disposed along the distal end portions of the leads to form an electrode array in the epidural space of a patient with at least first, second and third directional stimulation electrodes being oriented at determined angular orientations relative to the spinal cord or each other. The stimulation electrodes may be programmed to create a tripole in which at least the first, second and third directional stimulation electrodes are active.
Abstract: A method and device for treating tissue with temperature-sensitizing adjuvants to enhance the effects of ablation therapy. The method may comprise identifying tissue to receive ablation therapy, treating the tissue with a temperature-sensitizing agent, and activating an ablation therapy device proximate the treated tissue. The device may comprise a cryo-sensitizing adjuvant operable in association with a cryotherapy device, the cryo-sensitizing adjuvant enhancing the effectiveness of tissue destruction upon application of temperatures below 0° C.
Abstract: Memory and method for storing a plurality of memory bits. The memory has a data storage element and a processor. The data storage element has a plurality of lines, each having a plurality of segments having a plurality of data bits. A plurality of error correction codes are each associated with one of the lines. A plurality of validity bits, each being associated with one of the lines, are configured to indicate that one of the error correction codes associated with the one of the lines is valid or invalid. The processor is configured to generate one of the error correction codes for all of the data bits in the segments associated with one of the lines.
Abstract: This disclosure describes a state machine framework for programming closed-loop algorithms that control the delivery of therapy to a patient by an implantable medical device (IMD). The state machine framework may use one or more programmable state parameters to define at least part of a structure of a state machine that generates one or more therapy decisions based on one or more sensed states of the patient. The state machine framework may include a state machine runtime environment that executes on an IMD and that is configurable to implement a variety of different state machines depending on programmable state parameters that are received from an external device. The techniques of this disclosure may, in some cases, allow IMD developers and/or users to program, change, and/or download new closed-loop control policy algorithms during the lifespan of the IMD without requiring new firmware code to be downloaded onto the IMD.
Type:
Grant
Filed:
July 2, 2013
Date of Patent:
July 14, 2015
Assignee:
Medtronic, Inc.
Inventors:
David L. Carlson, Benjamin P. Isaacson, David E. Linde
Abstract: A contact component of an implantable medical device connector module assembly includes a threaded bore in fluid communication with a connector bore thereof, and a flanged bore in fluid communication with the threaded bore. A perimeter surface of the flanged bore creates a shutoff with a pin during injection molding to form an insulative body of the assembly, and a perimeter surface of an insulative bore formed around the pin is preferably flush with that of the flanged bore of the contact component. A centerline axis of the flanged bore is preferably aligned with that of the threaded bore, for example, so that the molded insulative bore has a centerline axis aligned with that of the threaded bore of the contact component.
Type:
Grant
Filed:
January 13, 2014
Date of Patent:
July 14, 2015
Assignee:
Medtronic, Inc.
Inventors:
Andrew J. Ries, Jeevan M. Prasannakumar, Richard P. Nelson
Abstract: A stent cover for enclosing a compressible stent during a stent crimping process, the stent cover having an outer sheath with a proximal end, a distal end, an end portion at the distal end of the sheath having a first diameter, and a stent-retaining portion adjacent to the end portion and having an uncompressed diameter that is larger than the first diameter of the end portion for retaining a stent in its uncompressed condition.
Abstract: Various techniques are described for periodically performing a calibration routine to calibrate a low-power system clock within an implantable medical device (IMD) based on a high accuracy reference clock also included in the IMD. The system clock is powered continuously, and the reference clock is only powered on during the calibration routine. The techniques include determining a clock error of the system clock based on a difference between frequencies of the system clock and the reference clock over a fixed number of clock cycles, and adjusting a trim value of the system clock to compensate for the clock error. Calibrating the system clock with a delta-sigma loop, for example, reduces the clock error over time. This allows accurate adjustment of the system clock to compensate for errors due to trim resolution, circuit noise and temperature.
Type:
Grant
Filed:
August 29, 2014
Date of Patent:
July 14, 2015
Assignee:
Medtronic, Inc.
Inventors:
Matthew C Bond, Charles R Gordon, Weizheng Liang, James D Reinke, Jonathan P Roberts
Abstract: A physiological sense amplifier achieves fast recovery times following receipt of a large voltage, such as when a defibrillation pulse is delivered, without blanking. The recovery time may be less than one millisecond when polarization of surrounding tissue or the housing of the device is not present. The sense amplifier uses a feedback network to clamp the input voltage to a gain amplifier at a predetermined value when a predetermined threshold value is exceeded.
Abstract: An electric storage battery including a jelly roll type electrode assembly having a mandrel. The mandrel includes a positive portion, a negative portion and a removable portion. The mandrel can be planar, having two faces with grooves on the positive and negative portions. The grooves are dimensioned to accommodate positive and negative feedthrough pins. The mandrel is welded to the feedthrough pins by using a laser beam incident on the opposite face of the mandrel from the face on which the grooves and pins are located. The laser beam melts the mandrel such that molten mandrel material fills the grooves welding the feedthrough pins in place. Electrodes are wrapped around the mandrel using the removable portion to wind the mandrel. The removable portion can be detached. The mandrel allows tighter wrapping of the jelly roll assembly and increasing battery miniaturization.
Abstract: The disclosure describes implantable medical systems that respond to occurrence of a lead-related condition by utilizing an elongated coil electrode in defining an alternative pacing therapy vector to maintain optimal drain of an IMD power supply. An exemplary system includes a medical electrical lead having an elongated electrode and an improved sensing and therapy delivery circuitry to provide the alternative pacing therapy vector responsive to the lead-related conditions. The system reconfigures the operation of the sensing and therapy delivery circuitry triggered by the switch to the alternative pacing therapy vector.
Type:
Grant
Filed:
April 27, 2012
Date of Patent:
July 14, 2015
Assignee:
Medtronic, Inc.
Inventors:
Gonzalo Martinez, Mark T Marshall, Kevin R Seifert
Abstract: A spinal construct comprises at least one spinal implant connected with vertebrae and a member extending between a first end including, at least one part configured for connection to tissue of a rib cage and a second end configured for connection with the at least one spinal implant. Systems and methods are disclosed.
Type:
Application
Filed:
January 9, 2014
Publication date:
July 9, 2015
Applicant:
Medtronic, Inc.
Inventors:
Richard E. McCarthy, Brian A. Butler, Joshua W. Simpson, Gary S. Lindemann