Patents Assigned to Medtronic
  • Patent number: 9011445
    Abstract: Rongeur and method for removing intervertebral disk tissue from a spinal column of a patient. A pair of bipolar electrodes on an elongated shaft is placed in proximity to the intervertebral disk tissue. Without withdrawing the instrument from the spinal column, the electrodes are activated with a source of RF energy to stiffen the intervertebral disk tissue, a source of saline solution is supplied to the intervertebral disk tissue and the intervertebral disk tissue is grasped with a grasping tool affixed in conjunction with the distal portion of the elongated shaft biting off a portion of the intervertebral disk tissue having been stiffened. The instrument is withdrawn from the spinal column of the patient to remove the portion of the intervertebral disk tissue. The inserting step, the placing, activating, supplying, grasping, and withdrawing steps are repeated until a desired portion of the intervertebral disk tissue has been removed.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: April 21, 2015
    Assignee: Medtronic Advanced Energy LLC
    Inventor: Roger D. Greeley
  • Patent number: 9011524
    Abstract: A stented valve including a compressible and expandable stent frame having a generally tubular body portion having an interior area and a longitudinal axis, a bioprosthetic valve positioned at least partially within the interior area of the tubular body portion of the stent frame and having an inner wall from which a plurality of leaflets extend; and a tubular covering material including a first portion extending from a first end of the stent frame to a second end of the stent frame, and a second portion extending beyond the second end of the stent frame.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: April 21, 2015
    Assignee: Medtronic, Inc.
    Inventor: Carol E. Eberhardt
  • Patent number: 9014815
    Abstract: A medical device lead is presented that includes an electrode assembly having a first electrode located near a distal end of the electrode assembly and a second electrode located near a proximal end of the electrode assembly. The electrode assembly also includes a conductive elongated coupler that is electrically coupled to the first electrode and capacitively coupled to the second electrode. At low frequencies and DC (e.g., during delivery of stimulation therapy), the capacitive coupling between the conductive elongated coupler and the second electrode presents a high impedance allowing little current to be redirected from the first electrode to the second electrode. However, at high frequencies (e.g., during an MRI scan) the capacitive coupling between the conductive elongated coupler and the second electrode presents a low impedance, resulting in a significant amount of induced current being redirected to the second electrode and dissipated into bodily fluid surrounding the second electrode.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: April 21, 2015
    Assignee: Medtronic, Inc.
    Inventors: Zhongping C. Yang, Piotr J. Przybyszewski, Ben W. Herberg, Kevin R. Seifert, Dina L. Williams
  • Patent number: 9011528
    Abstract: A flexible annuloplasty prosthesis for repairing a heart valve having a valve annulus. The annuloplasty prosthesis comprises a flexible body defining an exterior of the prosthesis formed of a biocompatible material and configured to rest against and support the heart valve annulus upon implantation. The flexible annuloplasty prosthesis has a height of not more than 2.5 mm. This low profile characteristic enhances a surgeon's ability to implant the prosthesis. In one preferred embodiment, the flexible body is a fabric material folded onto itself along a length thereof, with the annuloplasty prosthesis being characterized by an elevated longitudinal stiffness.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: April 21, 2015
    Assignee: Medtronic, Inc.
    Inventors: Timothy R. Ryan, Charles P. Tabor
  • Patent number: 9011420
    Abstract: A method of operating a medical system, including coupling a medical system to an outlet of a fluid distribution network having a plurality of fluid outlets in a patient treatment center; delivering fluid from the outlet to the medical system; compressing the delivered fluid with the medical system; decreasing the moisture content of the delivered fluid with the medical system; cooling the fluid with the medical system; delivering the fluid from the medical system to a medical device; and removing the fluid from medical device with the medical system.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: April 21, 2015
    Assignee: Medtronic CryoCath LP
    Inventor: Jean-Pierre Lalonde
  • Patent number: 9011341
    Abstract: The present invention provides an apparatus for detecting and monitoring obstructive sleep apnea. The apparatus measures sinus tachycardia and a change in the atrial-ventricular conduction, and includes a controller for receiving the measurement of the sinus tachycardia and the change in the atrial-ventricular conduction to detect obstructive sleep apnea based upon the sinus tachycardia and the change in the atrial-ventricular conduction.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: April 21, 2015
    Assignee: Medtronic, Inc.
    Inventors: Donald N. Jensen, Catherine R. Condie, Yong K. Cho
  • Publication number: 20150105793
    Abstract: Devices and implantation methods utilizing subcutaneous placement into a patient are disclosed for the insertion, advancement and positioning of a subcutaneous implantable medical device (SIMD) such as a medical electrical lead. The SIMD is releasably-engaged with a device in accordance with embodiments of this disclosure, and advanced from an incision of the patient to an implant location. The implantation device may be disengaged from the SIMD without moving the SIMD from the implant location.
    Type: Application
    Filed: February 11, 2014
    Publication date: April 16, 2015
    Applicant: Medtronic, Inc.
    Inventor: Mary L. Cole
  • Publication number: 20150106124
    Abstract: A system and method for ensuring the accuracy of health related information. This system is used for receiving, processing, analyzing, and verifying the accuracy of healthcare data prior to its transmission to a client. Embodiment described may enable patient data, collected from various patient input devices, to be automatically filtered or categorized into one of several categories. The categories are based on the potential accuracy of the data, which are determined by a set of pre-determined rules. Data that surpasses accuracy testing may then be transmitted to a client (hospitals, patient physicians, patient caregivers, patients, etc.) for review and/or incorporation into client records. Data that fails accuracy testing may be discarded.
    Type: Application
    Filed: October 15, 2014
    Publication date: April 16, 2015
    Applicant: Medtronic, Inc
    Inventors: Daniel L. COSENTINO, Brian A. Golden
  • Publication number: 20150105809
    Abstract: A catheter has an elongate tubular component that defines a pull wire lumen, which extends along at least a portion of a length thereof. A pull wire extends within the pull wire lumen with a distal end of the pull wire being secured near a distal end of the catheter. The catheter includes a pull wire actuation mechanism slidably disposed thereon that is operably coupled to a proximal end of the pull wire. The pull wire actuation mechanism includes a first or upper housing portion that is longitudinally translatable in a first direction relative to the guide catheter and a second or lower housing portion that is longitudinally translatable in an opposite, second direction relative to the catheter to actuate the pull wire and selectively operate the distal end thereof.
    Type: Application
    Filed: October 10, 2013
    Publication date: April 16, 2015
    Applicant: Medtronic Vascular, Inc.
    Inventor: Colm Connolly
  • Patent number: 9008744
    Abstract: Embodiments of the invention provide analyte sensors and sensor systems such as amperometric glucose sensors used in the management of diabetes as well as optimized methods for monitoring analytes using such sensors and sensor systems.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: April 14, 2015
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Jefferson Rose, Ashwin K. Rao, Ning Yang, Chia-Hung Chiu, Ying Luo, Rebecca K. Gottlieb
  • Patent number: 9008788
    Abstract: This disclosure describes techniques for enabling and/or disabling an exposure operating mode using telemetry signals. A telemetry device may be configured to periodically transmit telemetry signals indicating presence of a source of a disruptive energy field in accordance with a communication protocol. An implantable medical device may be configured to receive the telemetry signals from the telemetry device and enter the exposure operating mode in response to receiving a first one of the telemetry signals indicating the presence of the source of the disruptive energy field. The implantable medical device may also exit the exposure operating mode in response to not receiving any of telemetry signals indicating the presence of the source of the disruptive energy field for a predetermined period of time.
    Type: Grant
    Filed: February 10, 2010
    Date of Patent: April 14, 2015
    Assignee: Medtronic, Inc.
    Inventor: Troy A. Jenison
  • Patent number: 9005270
    Abstract: A method includes covering ostai of branch vessels emanating from a main vessel and an aneurysm with a high metal to vessel ratio stent. A metal to vessel ratio of the high metal to vessel ratio stent is sufficiently high to encourage tissue ingrowth around the high metal to vessel ratio stent yet is sufficiently low to ensure perfusion of the branch vessels through the high metal to vessel ratio stent. The ingrowth of tissue provides secure fixation and sealing of the high metal to vessel ratio stent to the main vessel and remodels and essentially eliminates the aneurysm. Further, as the entire high metal to vessel ratio stent is permeably, the high metal to vessel ratio stent is deployed without having to rotationally position the high metal to vessel ratio stent.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: April 14, 2015
    Assignee: Medtronic Vascular, Inc.
    Inventors: Keith Perkins, Samuel Robaina, Jeffery Argentine, Walter Bruszewski, Andrew Kiehl
  • Patent number: 9008414
    Abstract: A procedure can be assisted by a processor system, such as a computer system. A trajectory can be used to identify a selected trajectory or path of an instrument to reach a tumor within a brain of a subject, reach a selected portion of the anatomy (e.g. sub-thalamic nucleus (STN) or spinal cord), or other appropriate target. The planning algorithm can include both inputted data and learned rankings or ratings related to selected trajectories. The planning algorithm can used the learned ratings to rate and later determined trajectories.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: April 14, 2015
    Assignee: Medtronic Navigation, Inc.
    Inventors: Brandon Merkl, Rasool Khadem
  • Patent number: 9008797
    Abstract: An implantable medical electrical lead includes a plurality of conductors that extend continuously, without any intermediary junctions, between a plurality of electrodes and a corresponding plurality of contact members of an in-line connector terminal. A junction between each conductor and the corresponding contact member is preferably formed by first fitting a conductive sleeve, which is coupled to a proximal portion of the conductor, into an eyelet feature of the contact member, which is mounted on a strut member, and then welding the sleeve to the contact member at a pre-formed slot of the contact member, which extends along an external recessed surface thereof. The assembly of the connector terminal preferably completes the construction of the lead, wherein the proximal portion of each conductor is positioned in a helical path, which extends between an elongate body of the lead and the connector terminal, and along which a grip zone is formed.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: April 14, 2015
    Assignee: Medtronic, Inc.
    Inventors: Yaling Fan, Douglas N Hess, Megan M Kruse, Nathan Lee Olson, Kathryn R Parsons, Vu D Tran, Gareth Morgan
  • Patent number: 9005134
    Abstract: An implantable medical device having a flexible diaphragm is provided with a housing including a shell and an outer layer. The flexible diaphragm extends along the shell. The outer layer has an outer surface and an inner surface. An adhesive coating is applied between the diaphragm and the inner surface of the outer layer. The outer layer includes a recess along the diaphragm for receiving the adhesive.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: April 14, 2015
    Assignee: Medtronic, Inc.
    Inventors: Daniel S. Flo, James K. Carney, Kamal Deep Mothilal, Jon D. Schell
  • Patent number: 9008789
    Abstract: Waveforms are digitally sampled and compressed for storage in memory. The compression of the data includes generating a truncated entropy encoding map and using the values within the map to obtain good compression. An encoder further sub-selects values to be encoded and values to remain unencoded to provide an overall compression of the data.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: April 14, 2015
    Assignee: Medtronic, Inc.
    Inventor: Eric D. Corndorf
  • Patent number: 9008752
    Abstract: A contrast agent can be infused into a subject and a determination can be made of a VOD and/or a concentration gradient of the contrast agent in the VOD. The contrast agent can be infused in the subject using selected parameters. A correlation to a selected material can be made to determine parameters for infusion the selected material.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: April 14, 2015
    Assignee: Medtronic, Inc.
    Inventor: David Stiles
  • Patent number: 9008782
    Abstract: An implantable medical device comprises one or more electrical stimulation generators, and a housing that contains the one or more electrical stimulation generators. The implantable medical device also includes a first medical lead no greater than about 6 inches in length, and a second medical lead no greater than about 6 inches in length. The housing includes a first connector block that electrically connects the first medical lead to at least one of the one or more electrical stimulation generators, and a second connector block that electrically connects the second medical lead to at least one of the one or more electrical stimulation generators. The implantable medical device may be part of an electrical stimulation system implanted beneath the skin and inferior to the inion of a patient to deliver stimulation therapy to at least one of an occipital nerve and a branch of the occipital nerve.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: April 14, 2015
    Assignee: Medtronic, Inc.
    Inventors: John E. Kast, William Witt
  • Patent number: 9005634
    Abstract: A pharmaceutical depot includes a biodegradable polymer having a glass transition temperature of 20 degrees centigrade or less and at least 25% wt solid particles suspended in the biodegradable polymer. The pharmaceutical depot also includes a post-operative pain relieving therapeutic agent.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: April 14, 2015
    Assignee: Medtronic, Inc.
    Inventors: Phillip E. McDonald, Suping Lyu
  • Patent number: RE45484
    Abstract: A trackable medical instrument for use in a computer assisted image guided medical and surgical navigation systems that generate images during medical and surgical procedures, includes a guide member having an emitter array for being tracked by the system and a drive shaft contained within the guide member having a proximal and a distal end, the drive shaft being rotatable within the guide member while being fixable axially inside the guide member, the proximal end of the drive shaft having a first connector for interchangeably receiving at least one drive source, and the distal end having a second connector for interchangeably receiving at least one instrument tip.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: April 21, 2015
    Assignee: Medtronic Navigation, Inc.
    Inventors: Kevin T. Foley, Anthony J. Melkent, Catalina J. Carroll