Abstract: The present disclosure pertains to cardiac pacing methods and systems, and, more particularly, to cardiac resynchronization therapy (CRT). In particular, the present disclosure pertains to determining the efficacy of CRT through use of an effective capture test (ECT). One or more embodiments comprises sensing a signal in response to a ventricular pacing stimulus. Through signal processing, a number of features are parsed from the signal. Exemplary features parsed from the signal include a maximum amplitude, a maximum time associated with the maximum amplitude, a minimum amplitude, and a minimum time associated with the minimum amplitude. The data is evaluated through use of the ECT. By employing the ECT, efficacy of CRT is easily and automatically evaluated.
Abstract: The disclosure is directed to techniques for shifting between two electrode combinations. An amplitude of a first electrode combination is incrementally decreased while an amplitude of a second, or subsequent, electrode combination is concurrently incrementally increased. Alternatively, an amplitude of the first electrode combination is maintained at a target amplitude level while the amplitude of the second electrode combination is incrementally increased. The stimulation pulses of the electrode combinations are delivered to the patient interleaved in time. In this manner, the invention provides for a smooth, gradual shift from a first electrode combination to a second electrode combination, allowing the patient to maintain a continual perception of stimulation. The shifting techniques described herein may be used during programming to shift between different electrode combinations to find an efficacious electrode combination.
Type:
Grant
Filed:
October 3, 2011
Date of Patent:
May 27, 2014
Assignee:
Medtronic, Inc.
Inventors:
Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Gary W. King, Kenneth T. Heruth, Roy L. Testerman, Michael T. Lee, Nathan A. Torgerson, Joseph J. Nolan
Abstract: A patient defines a patient space in which an instrument can be tracked and navigated. An image space is defined by image data that can be registered to the patient space. A tracking device can be connected to a member in a known manner that includes imageable portions that generate image points in the image data. Selected image slices or portions can be used to register reconstructed image data to the patient space.
Type:
Grant
Filed:
April 18, 2012
Date of Patent:
May 27, 2014
Assignee:
Medtronic Navigation, Inc.
Inventors:
Steven L. Hartmann, Bradley A. Jascob, Brandon Merkl, Matthew F. Dicorleto
Abstract: A seal member for assembly within, or a seal zone portion of, a lumen of a medical instrument/device includes a slit segment and a bore, wherein the slit segment intersects with a funnel-like segment of the bore.
Type:
Grant
Filed:
October 19, 2012
Date of Patent:
May 27, 2014
Assignee:
Medtronic, Inc.
Inventors:
Ronald A Drake, Stanten C Spear, Lester O Stener, Gary R Fiedler, Scott W Hayden, Kendra Yasger
Abstract: A system and a method for acquiring image data of a subject with an imaging system is provided. The system can include a gantry that completely annularly encompasses at least a portion of the subject, with a source positioned within and movable relative to the gantry. The source can be responsive to a signal to output at least one pulse. The system can include a detector positioned within and movable relative to the gantry to detect the pulse emitted by the source. The system can also include a detector control module that sets detector data based on the detected pulse, and an image acquisition control module that sets the signal for the source and receives the detector data. The image acquisition control module can reconstruct image data based on the detector data. The signal can include a signal for the source to output a single pulse or two pulses.
Abstract: Embodiments of the present invention relates to analyte sensors. In particular, the preferred embodiments of the present invention relate to non-consuming intravascular glucose sensors based on fluorescence chemistry.
Abstract: An improved system and method for placing implantable medical devices (IMDs) such as leads within the coronary sinus and branch veins is disclosed. In one embodiment, a slittable delivery sheath and a method of using the sheath are provided. The sheath includes a slittable hub, and a substantially straight body defining an inner lumen. The body comprises a shaft section and a distal section that is distal to, and softer than, the shaft section. A slittable braid extends adjacent to at least a portion of one of the shaft section and the distal section. In one embodiment of the invention, the sheath further includes a transition section that is distal to the shaft section, and proximal to the distal section. The transition section is softer than the shaft section, but stiffer than the distal section.
Type:
Grant
Filed:
January 22, 2009
Date of Patent:
May 27, 2014
Assignee:
Medtronic, Inc.
Inventors:
Stanten C. Spear, James F. Kelley, Kenneth C. Gardeski, Mohmoud K. Seraj, Eric K. Y. Chan
Abstract: A system and method for distinguishing an epileptic event from a syncope event that includes sensing a signal, generating sensed intervals in response to the sensed signal, generating an indication signal in response to an occurrence of an event, determining a marginality in response to the generated indication signal and the sensed intervals, and determining the event as being one of the epileptic event and the syncope event in response to the determined marginality.
Type:
Grant
Filed:
August 23, 2010
Date of Patent:
May 27, 2014
Assignee:
Medtronic, Inc.
Inventors:
Nathalie Virag, H. Toby Markowitz, Rolf Vetter
Abstract: A method for closing an opening at a target site including bodily tissue including embedding a plurality of self-closing clips into the target site in a spaced apart manner about a perimeter of the opening. Each of the clips has opposing clip ends and an intermediate segment. A flexible tether is coupled to the embedded clips to form a loop about the opening perimeter. A pulling force is applied onto at least one of the loop ends, thereby drawing the perimeter of the opening onto itself to completely close the opening. The loop ends are secured to maintain the target site in a closed state. In some embodiments, the target site is apical cardiac tissue, and the method is performed as part of a trans-apical access procedure.
Type:
Grant
Filed:
April 21, 2009
Date of Patent:
May 27, 2014
Assignee:
Medtronic, Inc.
Inventors:
Sarah Ahlberg, Sara Simma, Paul T. Rothstein, Martin Clements, Damian Jelich, Timothy G. Laske, Cynthia Clague, Michael Green, Paul Iaizzo
Abstract: Suction-assisted tissue-engaging devices, systems, and methods are disclosed that can be employed through minimal surgical incisions to engage tissue during a medical procedure through application of suction to the tissue through a suction member applied to the tissue. A shaft is introduced into a body cavity through a first incision, and a suction head is attached to the shaft via a second incision. The suction head is applied against the tissue by manipulation of the shaft and suction is applied to engage the tissue while the medical procedure is performed through the second incision. A system coupled to the shaft and a fixed reference point stabilizes the shaft and suction head. When the medical procedure is completed, suction is discontinued, the suction head is detached from the shaft and withdrawn from the body cavity through the second incision, and the shaft is retracted through the first incision.
Type:
Grant
Filed:
March 28, 2013
Date of Patent:
May 27, 2014
Assignee:
Medtronic, Inc.
Inventors:
Philip J. Haarstad, Christopher P. Olig, Paul T. Rothstein, Michael J. Hobday, William A. Steinberg, David J. S. Kim, Thomas P. Daigle, Ann M. Thomas, Brian J. Ross, Steven C. Christian, Robert H. Reetz, Douglas H. Gubbin
Abstract: The method may include administering to a subject in need thereof an effective amount of an HCN polynucleotide. The HCN polynucleotide includes a nucleotide sequence encoding an HCN polypeptide having channel activity. The amino acid sequence of the HCN polypeptide and the amino acid sequence of a reference polypeptide have at least 80% identity, where the reference polypeptide begins with an amino acid selected from amino acids 92-214 and ends with an amino acid selected from amino acids 723-1188 of SEQ ID NO:8. An example of a reference polypeptide is amino acids 214-723 of SEQ ID NO:8. The HCN polynucleotide may be DNA or RNA.
Abstract: A system and method for monitoring at least one chamber of a heart (e.g., a left ventricular chamber) during delivery of extrasystolic stimulation to determine if the desired extra-systole (i.e., ventricular mechanical capture following refractory period expiration) occurs. The system includes an implantable or external cardiac stimulation device in association with a set of leads such as epicardial, endocardial, and/or coronary sinus leads equipped with motion sensor(s). The device receives and processes acceleration sensor signals to determine a signal characteristic indicative of chamber capture resulting from one or more pacing stimulus delivered closely following expiration of the refractory period.
Abstract: A delivery system for an implantable stented device having a handle with a plurality of actuation members, each actuation member connected to one or more stent attachment elements, a sheath having a proximal end attached to the handle, and a plurality of tubes extending within the sheath. The stent attachment elements extend from distal ends of the tubes. A first actuation member is configured to move a first stent attachment element proximally toward the handle and a second actuation member is configured to move a second stent attachment element proximally toward the handle, sequentially releasing specific portions of the stented device by causing distal ends of the stent attachment elements to contact an exterior of the distal ends of the tubes, thereby disengaging the first and second stent attachment elements from the stented device.
Type:
Application
Filed:
January 24, 2014
Publication date:
May 22, 2014
Applicant:
Medtronic, Inc.
Inventors:
Timothy G. LASKE, Timothy R. Ryan, Carolyn C. Majkrzak, Eliot Bloom, Charles Tabor
Abstract: Systems (10), devices (16), and methods may be used for treating bladder dysfunction, such as urgency and pelvic pain. In one example, a method includes administering a pharmacological agent to a patient (14) in a dosage sufficient to desensitize a C-afferent nerve fiber of the patient. Additionally, the method includes delivering stimulation to activate a nerve fiber proximate to the C-afferent nerve fiber via an electrode (19A, 19B, 21A, 21B, 29A-29D) electrically coupled to an implantable medical device (16). In some examples, the nerve fiber may be different than the C-afferent nerve fiber, the stimulation of the nerve fiber may elicit an inhibitory physiological response related to voiding in the patient, and/or the stimulation substantially may not activate the C-afferent nerve fiber after desensitization of the nerve fiber via the administration of the pharmacological agent.
Type:
Application
Filed:
August 16, 2011
Publication date:
May 22, 2014
Applicant:
Medtronic, Inc.
Inventors:
Xin Su, Gregory F. Molnar, Nelson E. Dwight
Abstract: Methods of nerve signal differentiation, methods of delivering therapy using such nerve signal differentiation, and to systems and devices for performing such methods. Nerve signal differentiation may include locating two electrodes proximate nerve tissue and differentiating between efferent and afferent components of nerve signals monitored using the two electrodes.
Type:
Application
Filed:
January 27, 2014
Publication date:
May 22, 2014
Applicant:
Medtronic, Inc.
Inventors:
Xiaohong Zhou, John Edward Burnes, Lilian Kornet, Richard N.M. Cornelussen
Abstract: A stented valve prosthesis for implantation within a native mitral valve having a generally tubular expandable stent structure having a first end, a second end, a central body portion having one or more openings, and a longitudinal axis. A wing portion extends outwardly from the stent structure and away from the longitudinal axis of the stent structure in an expanded deployed configuration. A radius of the wing portion is greater than a radius of the central body portion in the expanded deployed configuration, and the wing portion fits within one of the openings in the central body portion of the stent structure in a crimped delivery configuration. A valve structure having a plurality of leaflets is attached to an interior of the stent structure.
Type:
Application
Filed:
January 24, 2014
Publication date:
May 22, 2014
Applicant:
Medtronic, Inc.
Inventors:
Charles TABOR, Carol E. Eberhardt, Timothy G. Laske, Timothy R. Ryan, Joseph C. Morrow, Tammy Y. Tam, Brian A. Glynn, Anne L. Brody Rubin, J. Michael Tuchek
Abstract: A prosthesis can include a collapsible, reexpandable frame comprising first, second, and third sets of struts that define first and second rows of expandable cells. In some embodiments, the struts of the first, second, and third set of struts can be tapered. In some embodiments, the frame can include an intermediate section and an inflow section that is proximal to the intermediate section. The inflow section can include a concave saddle portion that is adjacent the intermediate section, and an outwardly flared portion.
Type:
Application
Filed:
November 20, 2012
Publication date:
May 22, 2014
Applicant:
Medtronic, Inc
Inventors:
Michael Krivoruchko, Karan Punga, Finn Rinne
Abstract: Methods and/or devices are disclosed herein for monitoring cardiac impedance signal and delivering therapy to a patient's heart based upon the monitored cardiac impedance.
Type:
Application
Filed:
January 27, 2014
Publication date:
May 22, 2014
Applicant:
Medtronic, Inc.
Inventors:
Douglas A. Hettrick, Todd M. Zielinski, Eduardo Warman, Sarkar Shantanu
Abstract: An ablation therapy system and systematic method is provided for treating continuous atrial fibrillation. The therapy system includes a Multi-Channel RF Ablation Generator, an ECG interface, an assembly of at least three ablation catheters, and an ECG interface operably coupling and interfacing the catheters to both an ECG unit and the RF Ablation Generator. The systematic method includes transseptally accessing the Left Atrium (LA) through the septum of the patient's heart, and performing an endocardial pulmonary vein ablation procedure on the pulmonary vein ostial tissue surrounding one or more pulmonary veins in a manner treating aberrant conductive pathways therethrough. After performing the pulmonary vein ablation, the method further includes performing an endocardial atrial septum ablation procedure on the septal tissue in a manner treating aberrant conductive pathways therethrough.
Type:
Application
Filed:
January 24, 2014
Publication date:
May 22, 2014
Applicant:
Medtronic Ablation Frontiers LLC
Inventors:
Randell L. WERNETH, Christopher G. KUNIS, Hakan ORAL, Fred MORADY, J. Christopher FLAHERTY
Abstract: Proper insertion of medical leads into medical devices is detected at the time the lead is being inserted. An external device initiates impedance testing by the medical device that is receiving the lead prior to the insertion of the lead being completed. The medical device reports back the results of the impedance testing so that the external device can determine whether the lead is properly inserted at the time of lead insertion and can provide an output to a user to indicate whether the lead insertion is proper. The medical device may poll only a last connector expected to be connected before responding, test other connector combinations before or after responding, and so forth.
Type:
Grant
Filed:
April 28, 2010
Date of Patent:
May 20, 2014
Assignee:
Medtronic, Inc.
Inventors:
Nathan A. Torgerson, James A. Zimmerman