Patents Assigned to Medtronic
  • Patent number: 6813516
    Abstract: A method for preventing early recurrence of atrial fibrillation by pacing a heart in AAI mode at a rate faster than the intrinsic rate for a selected period of time immediately after delivering therapy to terminate the fibrillation. Ventricular backup pacing in VVI mode may also be provided during the atrial pacing.
    Type: Grant
    Filed: January 31, 2002
    Date of Patent: November 2, 2004
    Assignee: Medtronic, Inc.
    Inventors: Michael R. Ujhelyi, David E. Euler, David A. Casavant, Nirav V. Sheth
  • Patent number: 6813519
    Abstract: An implanted medical device (e.g. infusion pump) and external device communicate with one another via telemetry wherein messages are transmitted under a robust communication protocol. The communication protocol gives enhanced assurance concerning the integrity of messages that impact medical operations of the implantable device. Messages are transmitted using a multipart format that includes a preamble, a frame sync, a telemetry ID, data, and a validation code. The data portion of the message includes an op-code that dictates various other elements that form part of the message. The data portion may also include additional elements such as sequence numbers, bolus numbers, and duplicate data elements. A telemetry ID for the transmitting device may be implicitly embedded in the message as part of the validation code that is sent with the message and that must be pre-known by the receiver to confirm the integrity of the received message.
    Type: Grant
    Filed: January 22, 2001
    Date of Patent: November 2, 2004
    Assignee: Medtronic Minimed, Inc.
    Inventors: Ronald J. Lebel, Varaz Shahmirian, Sam W. Bowman, IV, Robert C. Dennard, John T. Armstrong, John D. Richert
  • Patent number: 6811533
    Abstract: An implanted medical device (e.g. infusion pump) and external device communicate with one another via telemetry wherein messages are transmitted under a robust communication protocol. The communication protocol gives enhanced assurance concerning the integrity of messages that impact medical operations of the implantable device. Messages are transmitted using a multipart format that includes a preamble, a frame sync, a telemetry ID, data, and a validation code. The data portion of the message includes an op-code that dictates various other elements that form part of the message. The data portion may also include additional elements such as sequence numbers, bolus numbers, and duplicate data elements. A telemetry ID for the transmitting device may be implicitly embedded in the message as part of the validation code that is sent with the message and that must be pre-known by the receiver to confirm the integrity of the received message.
    Type: Grant
    Filed: January 22, 2001
    Date of Patent: November 2, 2004
    Assignee: Medtronic Minimed, Inc.
    Inventors: Ronald J. Lebel, Varaz Shahmirian, Sam W. Bowman, IV, Timothy J. Starkweather, Philip T. Weiss, Robert C. Dennard, John T. Armstrong, John D. Richert
  • Patent number: 6811534
    Abstract: An implanted medical device (e.g. infusion pump) and an external device communicate with one another via telemetry messages that are receivable only during windows or listening periods. Each listening period is open for a prescribed period of time and is spaced from successive listening periods by an interval. The prescribed period of time is typically kept small to minimize power consumption. To increase likelihood of successful communication, the window may be forced to an open state, by use of an attention signal, in anticipation of an incoming message. To further minimize power consumption, it is desirable to minimize use of extended attention signals, which is accomplished by the transmitter maintaining an estimate of listening period start times and attempting to send messages only during listening periods. In the communication device, the estimate is updated as a result of information obtained with the reception of each message from the medical device.
    Type: Grant
    Filed: January 22, 2001
    Date of Patent: November 2, 2004
    Assignee: Medtronic Minimed, Inc.
    Inventors: Sam W. Bowman, IV, Ronald J. Lebel, Varaz Shahmirian, Timothy J. Starkweather, Philip T. Weiss, Daniel H. Villegas, Robert C. Dennard, John T. Armstrong, John D. Richert
  • Publication number: 20040215188
    Abstract: An electrosurgery medical device is enhanced with unique solution-assistance, and comprises, in combination, co-operating device jaws including jaw portions for manipulating tissue, and a plurality of solution infusion openings defined and spaced along each of the jaw portions, for receiving electrolytic solution and infusing the solution onto and into tissue to be manipulated, along said jaw portions. As preferred, the device further comprises at least one, and most preferably, many, longitudinal groove(s) along at least one and most preferably, both, of the jaw portions, with the solution infusion openings located in the groove or grooves. The solution is energized with RF energy and contributes to the functions and beneficial effects of the instrument. The solution exits the openings in the grooves at sufficient flow rates to separate substantially all the operative surfaces of the device from tissue, thereby substantially completely preventing adherence between the operative surfaces and tissue.
    Type: Application
    Filed: February 7, 2002
    Publication date: October 28, 2004
    Applicant: Medtronic, Inc.
    Inventors: Peter M.J. Mulier, Michael F. Hoey
  • Publication number: 20040215181
    Abstract: In general, the invention provides a transurethral ablation device comprising a fluid delivery port for delivery of a fluid, such as a gel, liquid, or liquid suspension, to a tissue site targeted for ablation. The fluid is electrically conductive and carries a local anesthetic agent. When the fluid is delivered, it provides an anesthetic effect in the target tissue site, alleviating pain associated with the ablation procedure. In addition, the fluid is loaded with electrically conductive material to enhance conductivity and permit the creation of a virtual electrode. The virtual electrode extends throughout the volume of fluid delivered to the target tissue site, and enhances the volumetric coverage and precision of the ablation procedure with the prostate tissue.
    Type: Application
    Filed: April 25, 2003
    Publication date: October 28, 2004
    Applicant: Medtronic, Inc.
    Inventors: Mark A. Christopherson, Thomas Richard Skwarek
  • Publication number: 20040215300
    Abstract: Conductive aerogels are employed in fabrication of electrical medical leads adapted to be implanted in the body and subjected to bending stresses. An elongated, flexible and resilient, lead body extends from a proximal end to a distal end and includes an insulative sheath having an elongated lumen through which an elongated conductor extends. A layer of conductive aerogel is disposed over the conductor deforming upon movement of the conductor within the lumen against the aerogel in response to applied stresses.
    Type: Application
    Filed: April 23, 2003
    Publication date: October 28, 2004
    Applicant: Medtronic, Inc.
    Inventor: David D. Verness
  • Publication number: 20040214955
    Abstract: AnB block copolymers, wherein n is at least two, that include A blocks with poly(vinyl pyrrolidone) units and B blocks with urethane groups, urea groups, imide groups, amide groups, ether groups, ester groups, or combinations thereof, as well as medical devices and methods.
    Type: Application
    Filed: May 10, 2004
    Publication date: October 28, 2004
    Applicant: Medtronic, Inc.
    Inventors: Michael Eric Benz, Julie A. Alkatout, SuPing Lyu
  • Publication number: 20040215248
    Abstract: A system that includes a programming device and a defibrillator provides a self-adapting defibrillator induction feature to test the effectiveness of the defibrillator in detecting and terminating fibrillation of a heart, such as ventricular fibrillation. A fibrillation induction protocol and values for parameters of the protocol are selected. The defibrillator attempts to induce fibrillation according to the selected protocol and parameter values. Parameter values are modified and new protocols are selected until fibrillation is successfully induced, detected and terminated.
    Type: Application
    Filed: April 25, 2003
    Publication date: October 28, 2004
    Applicant: Medtronic, Inc.
    Inventor: Michael F. Hess
  • Publication number: 20040212076
    Abstract: A multilayer substrate device formed from a base substrate and alternating metalization layers and dielectric layers. Each layer is formed without firing. Vias may extend through one of the dielectric layers such that two metalization layers surrounding the dielectric layers make. contact with each other. The vias may be formed by placing pillars on top of a metalization layer, forming a dielectric layer on top of the metalization layer and surrounding the pillars, and removing the pillars. Dielectric layers may be followed by other dielectric layers and metalization layers may be followed by other metalization layers. Vias in the substrate may be filled by forming an assembly around the substrate, the assembly including printing sheets containing a conductive ink and pressure plates for applying pressure. A vacuum may be applied to remove air in the ink. Pressure may then be applied to the printing sheets through the pressure plates.
    Type: Application
    Filed: May 12, 2004
    Publication date: October 28, 2004
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Rajiv Shah, Shaun Pendo, Edward G. Babiracki
  • Publication number: 20040215180
    Abstract: The invention provides methods and devices for ablation of stomach tissue to treat obesity. For example, the invention may involve ablation of mucosal tissue to inhibit ghrelin production, recognized as a root cause of increased appetite. The invention alternatively may involve ablation of sub-mucosal tissue to alter myoelectric activity and thereby induce gastroparesis. As a further alternative, gastric muscle tissue, vagal nerves within the stomach or the pyloric region may be ablated to alter stomach function and thereby induce gastroparesis.
    Type: Application
    Filed: April 25, 2003
    Publication date: October 28, 2004
    Applicant: Medtronic, Inc.
    Inventors: Warren L. Starkebaum, Thomas R. Prentice
  • Publication number: 20040215068
    Abstract: In general, the invention is directed to systems and methods for monitoring the gastrointestinal system of a patient. In one embodiment, the invention includes techniques for monitoring the emptying of the patient's stomach. The techniques may employ glucose monitoring, pH monitoring with a consumable sensor, of monitoring the position of a consumable sensor as it exits the stomach. Consumable sensors may be employed to sense conditions, such as temperature or bile concentration, in other segments of the gastrointestinal system. The invention also includes systems for tracking the position of one or more consumable sensors as the sensors transit the gastrointestinal system, and monitoring the conditions sensed by the sensors.
    Type: Application
    Filed: April 25, 2003
    Publication date: October 28, 2004
    Applicant: Medtronic, Inc.
    Inventors: Michael Lykke, Michael Madsen, Martin T. Gerber, Warren L. Starkebaum
  • Publication number: 20040215270
    Abstract: In general, the invention is directed towards techniques for adaptively prioritizing cardiac episode data in a memory of an implanted medical device (IMD). More specifically, the IMD receives new cardiac episode data, assigns each piece of data a priority value, and stores the data in a memory of the IMD. The IMD can further recalculate initial priority values assigned to stored cardiac episode data in response to subsequent cardiac episode data. In this manner, the prioritization scheme used by the IMD is adaptive, i.e., changes as more contextual information regarding the cardiac episode and subsequent cardiac episodes becomes available. Upon exceeding a memory capacity threshold, the IMD identifies the stored cardiac episode data with a lowest priority from the hierarchical priority relationship, and overwrites the identified portion of the stored cardiac episode data with the new cardiac episode data.
    Type: Application
    Filed: April 25, 2003
    Publication date: October 28, 2004
    Applicant: Medtronic, Inc.
    Inventors: David E. Ritscher, Kevin T. Ousdigian
  • Publication number: 20040215229
    Abstract: A filter is deployed adjacent an occlusion in a vessel. A device including a stent and a sheath is advanced to the occlusion, the sheath is retracted to deploy the stent, and the stent is post dilated by a balloon of the device. The sheath is advanced through the deployed stent and over the balloon and over the filter. Since the balloon and the filter are enclosed within the sheath, any possibility of the balloon and/or the filter catching on the stent during retraction is eliminated.
    Type: Application
    Filed: April 22, 2003
    Publication date: October 28, 2004
    Applicant: Medtronic AVE, Inc.
    Inventor: James Coyle
  • Publication number: 20040215134
    Abstract: Activation of an enzyme in a bodily fluid is detected based on the amount of cleavage of a substrate for the enzyme. The substrate is tagged with two fluorescent dyes—a donor and an acceptor. The tagged substrate is presented to the bodily fluid. A device emits energy at a first wavelength into the bodily fluid, and detects energy at second and third wavelengths emitted by the dyes in response to the energy at the first wavelength. Prior to enzymatic cleavage of the substrate, the acceptor emits energy at the third wavelength in response to energy at the second wavelength received through fluorescent resonant energy transfer (FRET) from the donor. After enzymatic cleavage of the substrate, the donor emits energy at the second wavelength. The device can determine the concentration of activated enzyme within the bodily fluid based on the relative intensities of energy at the second and third wavelengths.
    Type: Application
    Filed: April 25, 2003
    Publication date: October 28, 2004
    Applicant: Medtronic, Inc.
    Inventors: Orhan Soykan, Maura G. Donovan
  • Publication number: 20040215237
    Abstract: In general, the invention provides a transurethral ablation device comprising an electrode for delivery of neurostimulation therapy to a patient to prevent or alleviate pain experienced during the course of a transurethral ablation procedure. The device may include a conductive ablation needle that delivers electrical current for ablation of prostate tissue, as well as neurostimulation current to prevent or alleviate pain encountered in response to the ablation current. In this sense, the ablation needle is integrated with a neurostimulation electrode. Alternatively, the device may incorporate a dedicated neurostimulation electrode independently of the ablation needle, either on the needle or on a catheter body that carries the needle.
    Type: Application
    Filed: April 25, 2003
    Publication date: October 28, 2004
    Applicant: Medtronic, Inc.
    Inventors: Mark A. Christopherson, John M. Swoyer
  • Publication number: 20040215269
    Abstract: An implantable medical device (IMD) provides an alert to a patient that has the IMD implanted in their body. The alert is used to remind the patient to schedule and/or proceed to a follow-up physician visit. The reminder is also used to remind the patient to initiate a remote communication so that stored data or other information may be transmitted to a remote computer network or other communication node.
    Type: Application
    Filed: April 25, 2003
    Publication date: October 28, 2004
    Applicant: Medtronic, Inc.
    Inventors: John E. Burnes, Luc R. Mongeon
  • Publication number: 20040213933
    Abstract: A process for producing a low-profile, high-strength dilatation catheter balloon is disclosed. The process comprises forming a tubular extrudate and quenching said extrudate in a cryogenic fluid. The quenched extrudate has morphology of a largely disordered material. The crystallinity in the extrudate is no more than 15%. The crystallinity of the extrudate is measured using X-ray crystallography or DSC. The extrudate is further processed in a mold in which the extrudate is longitudinally and radially stretched. The stretched extrudate is finally attached as a balloon to the distal end of a catheter.
    Type: Application
    Filed: April 22, 2003
    Publication date: October 28, 2004
    Applicant: Medtronic AVE, Inc.
    Inventor: Ashish Varma
  • Publication number: 20040215097
    Abstract: Method and apparatus for monitoring a plurality of physiological factors contributing to physiological conditions of a heart, that determines a first impedance, corresponding to the plurality of physiological factors, across a plurality of vectors, and a second impedance, corresponding to the plurality of physiological factors, across the plurality of vectors subsequent to determining the first impedance.
    Type: Application
    Filed: April 25, 2003
    Publication date: October 28, 2004
    Applicant: Medtronic, Inc.
    Inventor: Li Wang
  • Publication number: 20040215287
    Abstract: The invention provides an implantable trial neurostimulator. The implantable trial neurostimulator may be equipped with limited, short-term battery resources. The limited battery resources are designed to last for a finite period of time, thereby preventing a patient or physician from prolonging the trial neurostimulation period. For example, the implantable trial neurostimulator may be designed to stop functioning after a number of days or weeks, upon exhaustion of the battery resources. Alternatively, the implantable trial neurostimulator may be disabled upon expiration of a timer. The trial neurostimulator may be temporarily implanted in a subdural pocket in which the chronic stimulator is ultimately implanted. In this manner, the trial neurostimulator can be coupled to a chronic lead and avoid any percutaneous connections, reducing the risk of infection and affording greater convenience and comfort to patients.
    Type: Application
    Filed: April 25, 2003
    Publication date: October 28, 2004
    Applicant: Medtronic, Inc.
    Inventors: John M. Swoyer, Martin T. Gerber