Patents Assigned to Medtronics, Inc.
  • Patent number: 11918367
    Abstract: An example device for detecting one or more parameters of a cardiac signal is disclosed herein. The device includes one or more electrodes and sensing circuitry configured to sense a cardiac signal via the one or more electrodes. The device further includes processing circuitry configured to determine an R-wave of the cardiac signal and determine whether the R-wave is noisy. Based on the R-wave being noisy, the processing circuitry is configured to determine whether the cardiac signal around a determined T-wave is noisy. Based on the cardiac signal around the determined T-wave not being noisy, the processing circuitry is configured to determine a QT interval or a corrected QT interval based on the determined T-wave and the determined R-wave.
    Type: Grant
    Filed: February 6, 2023
    Date of Patent: March 5, 2024
    Assignee: Medtronic, Inc.
    Inventors: Gautham Rajagopal, Shantanu Sarkar
  • Patent number: 11918466
    Abstract: A medical device delivery system can include a dilator including a tip having a taper in a distal direction, a coupler, and a flap that radially protrudes from the tip. The flap can be configured to bend against a body lumen to cover at least a portion of the delivery system when the dilator is tracked through the body lumen. A medical device delivery system can include a dilator including a tip having a lumen and a coupler having a lumen. The coupler can be configured to securely connect to the tip such that the lumen of the tip is aligned with the lumen of the coupler to allow a guide wire to pass therethrough. Methods for loading a medical device into a delivery catheter are also disclosed.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: March 5, 2024
    Assignee: Medtronic, Inc.
    Inventors: Niall Duffy, John Gallagher, Gerry McCaffrey, Noam Miller, Glenn Stante
  • Patent number: 11918815
    Abstract: An example device for detecting one or more parameters of a cardiac signal is disclosed herein. The device includes one or more electrodes and sensing circuitry configured to sense a cardiac signal via the one or more electrodes. The device further includes processing circuitry configured to determine a representative signal based on the cardiac signal, the representative signal having a single polarity, and determine an end of a T-wave of the cardiac signal based on an area under the representative signal.
    Type: Grant
    Filed: May 3, 2022
    Date of Patent: March 5, 2024
    Assignees: Medtronic, Inc., UMC Utrecht Holding B.V.
    Inventors: Alfonso Aranda Hernandez, Berthold Stegemann, Marc A. Vos, David J. Sprenkeler
  • Patent number: 11911622
    Abstract: An implantable medical device system is configured to generate signals representing activity of a heart of a patient; determine, based on the signals, an intrinsic delay of the heart of the patient; determine whether the intrinsic delay is indicative of a first-degree heart block being present in the heart of the patient; determine a patient-specific timing regime for conduction system pacing based on whether the intrinsic delay is indicative of the first-degree heart block being present in the heart of the patient; and administer cardiac pacing to a native conduction system of the heart of the patient based on the timing regime.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: February 27, 2024
    Assignee: Medtronic, Inc.
    Inventors: Robert W. Stadler, Subham Ghosh, Jian Cao, Andrea Grammatico, Sarah Meloni, Xiaohong Zhou
  • Patent number: 11916256
    Abstract: In some examples, an assembly for a medical device. The assembly includes a first electrode comprising a first conductive tab, and a first current collector; a second electrode including a second conductive tab, a second current collector, a third current collector, and at least one connector connecting the second current collector to the third current collector, wherein the second current collector and the third current collector are folded over each other about the at least one connector, wherein the second conductive tab is coupled to the second current collector, and wherein the third current collector is electrically coupled to second conductive tab via the at least one connector and the second current collector; and a foil package being sealed over the first conductive tab and the second conductive tab to partially enclose the first electrode and second electrode.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: February 27, 2024
    Assignee: Medtronic, Inc.
    Inventors: Joseph J. Viavattine, Erik J. Hovland
  • Patent number: 11911623
    Abstract: A method, system and device for implanting an electrode assembly of an implantable medical device in a patient's heart. Positioning one or more radiopaque markers in a coronary sinus of the patient's heart. Positioning, by using the one or more positioned radiopaque markers as a fluoroscopic visual reference, a distal tip of a delivery catheter within a right atrium of the patient's heart so that a distal opening of a lumen of the catheter is against a septal wall of the heart at a location between the ostium of the coronary sinus and the A-V nodal area of the right atrium, and so that the tip of the catheter is generally directed toward a left ventricle of the patient's heart. Advancing the electrode assembly through the lumen of the catheter and into the septal wall.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: February 27, 2024
    Assignee: Medtronic, Inc.
    Inventors: Vicki L. Bjorklund, Xin Chen, William J. Clemens, Lilian Kornet, Jean Rutten, Berthold Stegemann, Zhongping Yang
  • Patent number: 11911177
    Abstract: This disclosure is directed to devices, systems, and techniques for determining an efficacy of a treatment program. For example, a medical device system includes a medical device including one or more sensors configured to generate a signal that indicates a parameter of a patient. Additionally, the medical device system includes processing circuitry configured to receive data indicative of a user selection of a reference time; determine a plurality of parameter values of the parameter based on a portion of the signal corresponding to a period of time including the reference time. Additionally, the processing circuitry is configured to identify, based on a first set of parameter values, a reference parameter value, calculate a parameter change value, and determine, based on the parameter change value, whether an improvement or a worsening of the patient has occurred responsive to a treatment administered beginning at the reference time.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: February 27, 2024
    Assignee: Medtronic, Inc.
    Inventors: Ekaterina M. Ippolito, Shantanu Sarkar, Eduardo N. Warman, Joel R. Lauer
  • Patent number: 11911166
    Abstract: A medical device system is configured to guide implantation of a pacing electrode for left bundle branch pacing. The system includes a medical device having a processor configured to receive at least one cardiac electrical signal, determine a feature of the cardiac electrical signal, compare the feature to left bundle branch signal criteria, and determine a left bundle branch signal in response to the feature meeting the left bundle branch signal criteria. The system includes a display unit configured to generate a user feedback signal indicating advancement of a pacing electrode into a left portion of a ventricular septum in response to the processor determining the left bundle branch signal.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: February 27, 2024
    Assignee: Medtronic, Inc.
    Inventors: Xiaohong Zhou, Wade M. Demmer, Robert W. Stadler
  • Patent number: 11911168
    Abstract: Systems and methods are described herein for determining whether cardiac conduction system pacing therapy may be beneficial and/or determining how proximal or distal a cardiac conduction system block may be using external cardiac signals. To do so, one or more left-sided metrics of electrical heterogeneity information may be generated based on left-sided surrogate cardiac electrical measured using a plurality of left external electrodes.
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: February 27, 2024
    Assignee: Medtronic, Inc.
    Inventor: Subham Ghosh
  • Patent number: 11904161
    Abstract: A lead assembly includes a central lead member having a distal portion configured to extend along a longitudinal axis. The lead assembly also includes two or more side lead members disposed around the central lead member. Each side lead member includes a deploying portion extending at an angle away from the longitudinal axis. Each deploying portion has a proximal portion and a distal portion. The distal portion is laterally spaced from the central lead member and extends more parallel to the longitudinal axis than the proximal portion. The lead assembly also includes one or more electrodes attached to the distal portion of the deploying portion of each side lead member. The lead assembly optionally includes a cannula comprising a lumen, an end portion, and a buckler disposed in the lumen on the end portion for deploying the lead members.
    Type: Grant
    Filed: July 25, 2022
    Date of Patent: February 20, 2024
    Assignee: Medtronic, Inc.
    Inventors: Richard T. Stone, Michael T. Hegland
  • Patent number: 11904175
    Abstract: A battery configured to support a relatively high rate of energy discharge relative to its capacity for energy intensive therapy delivery. The battery includes a feedthrough insulator cap disposed within the interior of the battery on at least a portion of a ferrule, at least a portion of an insulator, and at least a portion of a pin, which define a feedthrough extending through an enclosure of the battery; a first electrode disposed within the enclosure and electrically coupled to the pin; a second electrode disposed within the enclosure and separated a distance from the first electrode; and an electrolyte disposed between the first electrode and the second electrode. During operation of the battery, the feedthrough insulator cap reduces dendrite formation on at least a portion of the ferrule, the pin, or both.
    Type: Grant
    Filed: February 23, 2023
    Date of Patent: February 20, 2024
    Assignee: Medtronic, Inc.
    Inventors: Jeffrey J. Louwagie, Richard W. Swenson, Joel Hoepner, David J. DeSmet
  • Patent number: 11904170
    Abstract: A system for selecting a sensitivity level for adjusting an intensity setting for therapy provided to a patient includes one or more processors and one or more processors coupled to the memory. The one or more processors are configured to receive an indication of an input to adjust an intensity setting related to the therapy provided to the patient and determine a sensitivity level for adjustment of the intensity setting based on an efficacy of the therapy provided to the patient. The one or more processors are further configured to determine an updated intensity level for the intensity setting based on the sensitivity level and the input to adjust the intensity setting and output an instruction to cause a medical device to provide the therapy at the updated intensity level.
    Type: Grant
    Filed: November 23, 2021
    Date of Patent: February 20, 2024
    Assignee: Medtronic, Inc.
    Inventors: Todd D. Zenisek, Touby A. Drew, Brian Andrew Smith, Juan G. Hincapie, Leonid M. Litvak
  • Patent number: 11904173
    Abstract: Systems, apparatus, methods and computer-readable storage media facilitating telemetry overuse reduction in a medical device, such as an implantable medical device (“IMD”) are provided. In one embodiment, an IMD includes a housing configured to be implanted at least partially within a patient, a memory and circuitry within the housing and a processor that executes executable components stored in the memory.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: February 20, 2024
    Assignee: Medtronic, Inc.
    Inventors: Matthew R. Yoder, Bo Zhang, Gary P. Kivi, Richard A. Sanden
  • Patent number: 11904172
    Abstract: An external device transfers a key to an implantable medical device over a proximity communication and then establishes a first far field communication session with the implantable medical device where the key is used for the first communication session. This first communication session may occur before implantation while the implantable medical device is positioned outside of the sterile field so that using a proximity communication is easily achieved. Once the implantable medical device is passed into the sterile field for implantation, the external device may then establish a second far field communication session with the implantable medical device where the last key that was used for the first communication session is again used for the second communication session which avoids the need for another proximity communication to occur within the sterile field.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: February 20, 2024
    Assignee: MEDTRONIC, INC.
    Inventors: Warren W. Ball, Ajinkya M. Joglekar, Nathan A. Torgerson, Matthew L. Plante
  • Patent number: 11909042
    Abstract: A rechargeable lithium-ion battery includes a positive electrode enabling fast charging. A negative electrode has a first active material including Li4Ti5O12. A positive electrode includes a second active material including LiCoO2. The positive electrode further includes a carbon conductive agent and a binder. A weight ratio of the carbon conductive agent to the binder is in a range of about 2:3 to about 3:2.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: February 20, 2024
    Assignee: Medtronic, Inc.
    Inventors: Hui Ye, Prabhakar A. Tamirisa
  • Patent number: 11896838
    Abstract: A method for controlling charging a power source of an implantable medical device (IMD) in a patient including determining a power being delivered to a primary coil of an external charging device for recharging, determining an estimated power delivered to the IMD power source an estimated heat generated by the primary coil based on a resistance of the primary coil determined as function of at least one of a recharge frequency, a temperature of the primary coil, and a current supplied to the primary coil, calculating an estimated heat generated by the IMD by subtracting the estimated heat generated by the primary coil and the estimated power delivered stored by the rechargeable power source from the power being delivered to a primary coil; and controlling based on the heat generated by the IMD, the power being delivered by the primary coil of the external charging device.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: February 13, 2024
    Assignee: Medtronic, Inc.
    Inventors: Andrew Fried, Brett Otteson, Douglas Brown, Venkat Gaddam
  • Patent number: 11896403
    Abstract: Techniques for detecting infections in a patient in relation to temperature values obtained from implantable temperature sensors are described. An example implantable temperature sensor may be included within a housing of an implantable medical device (IMD). In some examples, the temperature sensor may determine a plurality of temperature values over time. Processing circuitry of the IMD or of an external device may smooth the temperature values and apply an infection detection model to the smoothened temperature signal to determine an infection status of the patient.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: February 13, 2024
    Assignee: Medtronic, Inc.
    Inventors: Ameet Braganza, Mark T. Marshall, Teresa A. Whitman, Robert W. Stadler, Brian B. Lee
  • Patent number: 11896828
    Abstract: Systems, devices, methods, and techniques are described for using evoked compound action potential (ECAP) signals to determine an implant location for a lead. An example method includes receiving first information representative of a first evoked compound action potential (ECAP) signal sensed in response to a first control stimulus delivered to a first location adjacent to a spinal cord of a patient. The method also includes receiving, second information representative of a second ECAP signal in response to a second control stimulus delivered to a second location adjacent to the spinal cord of the patient. Additionally, the method includes outputting a first indication of the first information representative of the first ECAP signal and a second indication of the second information representative of the second ECAP signal.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: February 13, 2024
    Assignee: Medtronic, Inc.
    Inventors: David A. Dinsmoor, Andrew L Schmeling
  • Patent number: 11896440
    Abstract: A medical delivery system including a carrier and a lead delivery device. The carrier defines a carrier body configured to engage a stereotactic system (or a similar pointing device with or without navigation/robotic assistance). The carrier defines a carrier channel configured to engage the lead delivery device and impart a torque to a portion of the lead delivery device. The lead delivery device and carrier are configured to cause the imparted torque to cause a cannula of the lead delivery device to rotate about a longitudinal axis of the lead delivery device. The cannula is configured to cause a rotation of an implantable lead within the cannula when the cannula is caused to rotate. The cannula is configured to translate substantially parallel to the longitudinal axis relative to the implantable lead.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: February 13, 2024
    Assignee: Medtronic, Inc.
    Inventors: Janardan Vaidyanathan, Charles T. Graves
  • Patent number: 11896830
    Abstract: Various embodiments of a hermetically-sealed package and a method of forming such package are disclosed. The package includes a housing that extends along a housing axis between a first end and a second end, where the housing includes first and second opaque portions and a transparent portion disposed between the first and second opaque portions. The first opaque portion is hermetically sealed to a first end of the transparent portion and the second opaque portion is hermetically sealed to a second end of the transparent portion. At least one of the first and second opaque portions is hermetically sealed to the transparent portion by a weld ring. The package further includes a power source disposed within the housing, and an inductive coil disposed at least partially within the transparent portion of the housing and electrically connected to the power source.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: February 13, 2024
    Assignee: Medtronic, Inc.
    Inventors: Andrew J. Thom, Rajesh V. Iyer, Gordon O. Munns, Christian S. Nielsen, Andrew J. Ries