Patents Assigned to Medwaves, Inc.
  • Patent number: 5993394
    Abstract: A method for determining blood pressure of an artery includes the steps of applying a pressure to the artery, sensing pressure data produced by the artery and deriving parameters for the sensed pressure data. The parameters are utilized for generating a first blood pressure value estimate using a first function of the parameters based upon a first range of pressure values and by generating at least one second blood pressure estimate using at least one second parameter function based upon a second blood pressure estimate using at least one second parameter function based upon a second pressure range different from the first pressure range. A blood pressure value is determined based upon the first blood pressure estimate and said at least one second blood pressure estimate.
    Type: Grant
    Filed: April 13, 1998
    Date of Patent: November 30, 1999
    Assignee: Medwave, Inc.
    Inventor: Marius O. Poliac
  • Patent number: 5941828
    Abstract: A hand-held non-invasive blood pressure measurement device allows a varying pressure to be applied to an artery while pressure waveforms are sensed to produce pressure waveform data. Waveform parameters are derived from the sensed pressure waveform data. Blood pressure is then determined using the derived parameters. The user is guided or prompted to apply the varying pressure through audible and visual feedback.
    Type: Grant
    Filed: August 15, 1997
    Date of Patent: August 24, 1999
    Assignee: Medwave, Inc.
    Inventors: G. Kent Archibald, Timothy G. Curran, Orland H. Danielson, Marius O. Poliac, Roger C. Thede
  • Patent number: 5938618
    Abstract: The present invention is a method for locating a sensor over an underlying artery having a blood pulse. The sensor is positioned at a plurality of locations above a known appoximate location of the artery while applying a constant hold down pressure to the artery. The sensor is finally positioned at the location which exhibits the largest maximum pressure ampltiude.
    Type: Grant
    Filed: August 8, 1997
    Date of Patent: August 17, 1999
    Assignee: Medwave, Inc.
    Inventors: G. Kent Archibald, Timothy G. Curran, Orland H. Danielson, Marius O. Poliac, Roger C. Thede
  • Patent number: 5832924
    Abstract: The present invention is a method for locating a sensor over an underlying artery having a blood pulse. The sensor is positioned at a plurality of locations above a known approximate location of the artery while applying a constant hold down pressure to the artery. The sensor is finally positioned at the location which exhibits the largest maximum pressure ampltiude.
    Type: Grant
    Filed: February 16, 1995
    Date of Patent: November 10, 1998
    Assignee: Medwave, Inc.
    Inventors: G. Kent Archibald, Timothy G. Curran, Orland H. Danielson, Marius O. Poliac, Roger C. Thede
  • Patent number: 5797850
    Abstract: The present invention is a method and apparatus for calculating blood pressure of an artery having a pulse. The method includes applying a varying pressure to the artery. Pressure waveforms are sensed to produce pressure waveform data. Waveform parameters are derived from the sensed pressure waveform data. Blood pressure is then determined using the derived parameters. The apparatus is a blood pressure monitoring device which includes pressure means for applying a varying pressure to the artery so that the artery exhibits pressure data, sensing means for sensing the pressure data, signal producing means connected to the sensing means for producing output signals corresponding to the sensed pressure data and processing means for receiving the output signals from the signal producing means, for deriving a plurality of parameters using sensed pressures and for determining a blood pressure value using the derived parameters.
    Type: Grant
    Filed: February 16, 1995
    Date of Patent: August 25, 1998
    Assignee: Medwave, Inc.
    Inventors: G. Kent Archibald, Timothy G. Curran, Orland H. Danielson, Marius O. Poliac, Roger C. Thede
  • Patent number: 5738103
    Abstract: A method for determining blood pressure of an artery includes the steps of applying a pressure to the artery, sensing pressure data produced by the artery and deriving parameters from the sensed pressure data. The parameters are utilized for generating a first blood pressure value estimate using a first function of the parameters based upon a first range of pressure values and by generating at least one second blood pressure estimate using at least one second parameter function based upon a second pressure range different from the first pressure range. A blood pressure value is determined based upon the first blood pressure estimate and said at least one second blood pressure estimate.
    Type: Grant
    Filed: July 31, 1996
    Date of Patent: April 14, 1998
    Assignee: Medwave, Inc.
    Inventor: Marius O. Poliac
  • Patent number: 5722414
    Abstract: A sensor having a sensing surface for sensing blood pressure within an underlying artery of a patient includes a transducer, a sidewall, a flexible diaphragm and a fluid coupling medium. The sidewall is distinct from transducer and supports the transducer above the underlying artery. The fluid coupling medium is coupled between the sensing surface of transducer and the flexible diaphragm and transmits blood pressure pulses within the underlying artery from the flexible diaphragm to the sensing surface of transducer. In one embodiment, the fluid coupling medium is isolated from sidewall.
    Type: Grant
    Filed: April 19, 1996
    Date of Patent: March 3, 1998
    Assignee: Medwave, Inc.
    Inventors: G. Kent Archibald, Timothy G. Curran, Orland H. Danielson, Marius O. Poliac, Roger C. Thede
  • Patent number: 5720292
    Abstract: A method for identifying an onset of a first heart beat includes sensing blood pressure over time to produce a plurality of blood pressure samples, each sample having a corresponding blood pressure amplitude in time, identifying a post onset point in time following an onset of the first heart beat and preceding an onset of a second heart beat, and identifying an onset of the heart beat based upon the blood pressure samples and the post onset point.
    Type: Grant
    Filed: July 31, 1996
    Date of Patent: February 24, 1998
    Assignee: Medwave, Inc.
    Inventor: Marius O. Poliac
  • Patent number: 5649542
    Abstract: A sensor for sensing blood pressure within an underlying artery as the underlying artery is compressed includes a transducer and a compressible sidewall. The transducer senses blood pressure of blood pressure pulses as the pulses travel beneath the sensor. As each blood pressure pulses crosses an edge of the sensor, each pulse exerts a force on the sensor in a direction parallel to the underlying artery. Tissue surrounding the underlying artery also exerts a force. The compressible sidewall is distant from the transducer and engages tissue surrounding the underlying artery. The compressible side wall neutralizes the force exerted by the tissue surrounding the underlying artery and dampens the force parallel to the underlying artery so that a substantially zero pressure gradient exists across the transducer.
    Type: Grant
    Filed: May 3, 1995
    Date of Patent: July 22, 1997
    Assignee: Medwave, Inc.
    Inventors: G. Kent Archibald, Timothy G. Curran, Orland H. Danielson, Marius O. Poliac, Roger C. Thede
  • Patent number: 5642733
    Abstract: A blood pressure sensor locator for locating a blood pressure sensing device over an underlying artery of a patient includes a base, an adhesive on an underside of the base for coupling the base to an anatomy of the patient and a guide supported by the base and configured for contacting the sensing device to locate an aligned sensing device over the underlying artery.
    Type: Grant
    Filed: April 8, 1996
    Date of Patent: July 1, 1997
    Assignee: Medwave, Inc.
    Inventors: G. Kent Archibald, Orland H. Danielson, Roger J. Woessner
  • Patent number: 5640964
    Abstract: A device for supporting a sensing surface above an underlying artery of a patient includes a hold down assembly and a sensor interface pivotally coupled to the hold down assembly. The hold down assembly is secured at a spaced position relative to the underlying artery of the patient. The sensor interface includes a flexible diaphragm, a compressible side wall and a mount. The flexible diaphragm has an active portion for transmitting blood pressure pulses of the underlying artery. The compressible side wall encircles the active portion and has a top end and a bottom end. The bottom end is secured to the flexible diaphragm. The mount is coupled to the top end of the compressible side wall. The mount has a connection located below the top end of the compressible side wall for receiving a movable member of the hold down assembly so that the movable member may be pivotally coupled to the sensor below the top end of the compressible side wall.
    Type: Grant
    Filed: February 16, 1995
    Date of Patent: June 24, 1997
    Assignee: Medwave, Inc.
    Inventors: G. Kent Archibald, Timothy G. Curran, Orland H. Danielson, Marius O. Poliac, Roger C. Thede
  • Patent number: 5450852
    Abstract: A transducer having a sensing surface for sensing blood pressure within an underlying artery of a patient includes a transducer, a sidewall, a flexible diaphragm and a fluid coupling medium. The sidewall supports the transducer above the underlying artery. The flexible diaphragm is spaced from the sensing surface of the transducer. The fluid coupling medium is coupled between the sensing surface of the transducer and the flexible diaphragm and transmits blood pressure pulses within the underlying artery from the flexible diaphragm to the sensing surface of the transducer. The fluid coupling medium is isolated from the sidewall so that forces are not transmitted from the sidewall through the fluid coupling medium to the transducer.
    Type: Grant
    Filed: April 14, 1994
    Date of Patent: September 19, 1995
    Assignee: Medwave, Inc.
    Inventors: G. Kent Archibald, Timothy G. Curran, Orland H. Danielson, Marius O. Poliac, Roger C. Thede