Patents Assigned to Melexis Technologies SA
  • Patent number: 10879921
    Abstract: An integrated circuit is provided that includes an output stage circuit. The output stage circuit includes an input node for receiving a digital input signal, a supply voltage node for receiving a supply voltage signal, a digital to analog convertor for converting the digital signal, an amplifier for amplifying the converted signal, a first/second and optionally third voltage regulator generating a first/second and optionally third voltage signal, and a greatest-voltage selector circuit for providing power to the amplifier. Two different voltages are provided to the DAC. The output signal can be a SENT signal. The circuit is highly robust against power-interruptions and EMI.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: December 29, 2020
    Assignee: Melexis Technologies SA
    Inventors: Matthijs Pardoen, Cesare Ghezzi, Kevin Fahrni
  • Patent number: 10850578
    Abstract: A method of measuring and transmitting a tire characteristic using a sensor device mounted to a tire of a wheel, the sensor device comprising a sensor element, an accelerometer, a wireless transmitter, and a microprocessor; the method comprising the steps of: a) obtaining acceleration data; b) digitally filtering the acceleration data; c) determining moments in time when the wheel is in an angular position range; d) obtaining other sensor data; e) transmitting the other sensor data at said moments in time, step b) comprising using exponential moving average filters connected in series, corresponding to a predefined set of formulas comprising parameters, and f) determining number of samples per 360° rotation, and setting the parameters to a value proportional to said number of samples. A sensor device adapted for performing said method.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: December 1, 2020
    Assignee: MELEXIS TECHNOLOGIES SA
    Inventor: Oleksandr Zhuk
  • Patent number: 10845215
    Abstract: The present invention relates to an inductive position sensor configured to determine a position of a target device, comprising at least one receiving coil arranged to receive a magnetic field and an inner transmitting coil winding and an outer transmitting coil winding arranged to generate said magnetic field, whereby said at least one receiving coil is positioned between said inner transmitting coil winding and said outer transmitting coil winding and whereby said inner transmitting coil winding and said outer transmitting coil winding are so arranged that current flows in the same sense.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: November 24, 2020
    Assignee: MELEXIS TECHNOLOGIES SA
    Inventors: Wolfram Kluge, Lorenzo Lugani
  • Patent number: 10823583
    Abstract: The present invention relates to a sensor device comprising four or more sensor elements. A controller comprising a control circuit controls the sensor elements to measure an environment attribute, produces more than two values corresponding to the measurement and compares the values to determine a fault. The more than two values are obtained by different combinations of sensor elements that have at least one sensor element in common and one sensor element that is not in common. The values can be measured in different coordinate systems and the control circuit can convert the field vectors into a common coordinate system.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: November 3, 2020
    Assignee: MELEXIS TECHNOLOGIES SA
    Inventors: Javier Bilbao de Mendizabal, Mathieu Poezart
  • Patent number: 10816318
    Abstract: A magnetic sensor arrangement, comprising: a magnet assembly and a magnetic sensor; the magnet assembly forming a magnetic field having at least two magnetic field components with different angular periodicities at the location of the magnetic sensor and the magnetic sensor including means for sensing the different magnetic field components to produce at least a first and a second sensor element signal; and a computing element for receiving the at least first and second sensor element signals and combining them to produce a unique angular position of the magnet relative to the sensor. A method of determining a unique angular position is also provided.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: October 27, 2020
    Assignee: Melexis Technologies SA
    Inventors: Peter Vandersteegen, Jean-Claude Depoorter, Samuel Huber Lindenberger
  • Patent number: 10819317
    Abstract: A stabilized oscillator which comprises a ring oscillator with an odd number of inverters. The output of an inverter is driving a capacitor and the input of the a next inverter. A feedback element is configured for generating a first and a second current with a fixed current ratio between both, and for applying the same voltage over the ring oscillator as over a resistor which is connected in parallel with a current compensator. The first current goes through the parallel connection, the second current goes through the ring oscillator. The current compensator is configured such that the ratio of the current through the current compensator and a parasitic current component of the second current is substantially equal to the ratio of the first and second current.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: October 27, 2020
    Assignee: MELEXIS TECHNOLOGIES SA
    Inventors: Abhirup Lahiri, Shenjie Wang
  • Patent number: 10809314
    Abstract: A field-sensor device comprises a reference field sensor biased with a reference current. The reference field sensor provides a reference sensor signal in response to a field, and a calibrated field sensor biased with an individually adjustable current and providing a calibrated sensor signal in response to the field. A control circuit controls the adjustable current bias of the calibrated field sensor at a calibrated current different from the reference current so that the calibrated field sensor provides a calibrated sensor signal substantially equal to the reference sensor signal in response to a common field. The field sensor device is arranged to be exposed, when in a calibration mode, to a uniform calibration field and, when in operational mode, to an operational field being a field gradient.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: October 20, 2020
    Assignee: MELEXIS TECHNOLOGIES SA
    Inventors: Gael Close, Arnaud Laville, Stefan Rigert, Samuel Huber Lindenberger
  • Patent number: 10788546
    Abstract: A magnetic sensor device comprises a substrate having a surface and a magnetic sensor. A plurality of magnetic cores is disposed on, over, below or in direct contact with a substrate surface, at least one of the magnetic cores having an electrical conductor helically wound around the core forming a coil having a coil length. Each magnetic core is separated from any other magnetic core by a gap length. A current passing through the one or more coils generates a magnetic field. The plurality of cores and gaps form at least one closed magnetic circuit along which the generated magnetic field flux passes, and the total length of the at least one closed magnetic circuit is at least twice the total length of the plurality of gaps of the at least one closed magnetic circuit through which the at least a portion of the magnetic field flux passes.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: September 29, 2020
    Assignee: MELEXIS TECHNOLOGIES SA
    Inventor: Javier Bilbao De Mendizabal
  • Patent number: 10739418
    Abstract: A method of reading out a Hall plate which comprises at least 4 contacts. The method comprises: reading out two of the contacts while biasing two other contacts of the at least 4 contacts thereby obtaining a readout signal; switching biasing and readout contacts according to a random or pseudo-random sequence of phases, each phase corresponding with a different permutation of biasing and readout contacts selected from the at least 4 contacts of the Hall plate wherein the biasing and readout contacts are selected such that the readout signal is a measure for the magnetic field; processing of the readout signal to obtain a readout of the Hall plate representative for the magnetic field.
    Type: Grant
    Filed: July 5, 2019
    Date of Patent: August 11, 2020
    Assignee: Melexis Technologies SA
    Inventors: Johan Raman, Pieter Rombouts
  • Patent number: 10718634
    Abstract: A rotation angle detector includes a magnet arranged to rotate, and a magnetic detection circuit provided with a first pair of magnetic detection elements arranged to be in combination sensitive to a first magnetic field in circumferential direction to the first surface and to a second magnetic field in normal direction to the first surface and arranged away from the rotation axis, and configured to detect magnetic flux of the magnet. A second pair of magnetic detection elements are arranged to be in combination sensitive to the first magnetic field in circumferential direction to the first surface and to the second magnetic field in normal direction to the first surface. A signal processing unit is configured to output a signal representative of a rotation angle of the magnet based on outputs of the first and second pair of magnetic detection elements.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: July 21, 2020
    Assignee: MELEXIS TECHNOLOGIES SA
    Inventor: Takumi Yoshiya
  • Patent number: 10712143
    Abstract: A multi-element sensor includes a substrate having a surface. A first sensing element for sensing an environmental attribute is disposed on or over the substrate surface. A second sensing element is disposed over the same substrate surface as the first sensing element, above the first sensing element in a direction orthogonal to the substrate surface. The second sensing element is arranged for sensing the same environmental attribute. In one configuration, the first and second sensing elements sense the same environmental attribute at a location between the first and second sensing elements.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: July 14, 2020
    Assignee: Melexis Technologies SA
    Inventors: Javier Bilbao De Mendizabal, Lucian Barbut
  • Patent number: 10698009
    Abstract: A method of biasing and reading-out a passive resistive sensor structure having two excitation nodes and two readout nodes, comprises the steps of: a) determining a first state of a first capacitor corresponding to a first amount of charge biasing the sensor structure such that a biasing current flows through said first capacitor during a first time interval determining a second state of the first capacitor corresponding to a second amount of charge integrating or averaging the readout signal during a second time interval related to the first time interval, thereby obtaining an integrated or averaged readout signal determining the sensor readout signal based on the integrated or averaged readout signal and a change in state of the first capacitor.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: June 30, 2020
    Assignee: Melexis Technologies SA
    Inventors: Johan L. Raman, Pieter Rombouts
  • Publication number: 20200124684
    Abstract: An apparatus and a method for redundant measurements of a magnetic field originating from or influenced by a moveable object is described. The apparatus comprising at least one first magnetic field sensitive element measuring at least one magnetic field property of the magnetic field, wherein the at least one first magnetic field sensitive element is implemented on a first area of a semiconductor substrate, at least one second magnetic field sensitive element measuring at least one magnetic field property of the magnetic field, wherein the at least one second magnetic field sensitive element is implemented on a second area of said semiconductor substrate, and wherein the first and second areas are isolated from one another.
    Type: Application
    Filed: December 14, 2017
    Publication date: April 23, 2020
    Applicant: Melexis Technologies SA
    Inventors: Jan-Willem BURSSENS, Vincent HILIGSMANN, Lucian BARBUT, Samuel HUBER LINDENBERGER, Christian SCHOTT
  • Patent number: 10618553
    Abstract: A torque sensor for sensing the torque applied to a first shaft has a multipolar magnet rotated therewith and is connected to a second shaft via a torsion bar. The torque sensor includes a pair of magnetic yokes adapted to be disposed in a magnetic field of the multipolar magnet and adapted to be rotated together with the second shaft. A magnetic detection element has a detection surface and is capable of detecting a magnetic flux in a direction parallel to the detection surface.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: April 14, 2020
    Assignee: MELEXIS TECHNOLOGIES SA
    Inventor: Takumi Yoshiya
  • Patent number: 10612942
    Abstract: To provide a displacement detection device and a continuously variable transmission that directly detect the position of the movable sheave. A displacement detection device includes a magnet that forms a magnetic field, a movable sheave that is rotated in a rotational direction and displaced in a direction perpendicular to the rotational direction and that is a measuring object having a concave portion (or a protrusion) on the circumferential surface, and a sensor disposed between the magnet and the circumferential surface of the movable sheave and detecting a change in magnetic flux density due to the displacement of the movable sheave in the magnetic field formed by the magnet and induced to the concave portion (or the protrusion).
    Type: Grant
    Filed: September 5, 2016
    Date of Patent: April 7, 2020
    Assignee: MELEXIS TECHNOLOGIES SA
    Inventor: Takumi Yoshiya
  • Patent number: 10578420
    Abstract: A rotation angle detection system comprises a magnet arranged to rotate around a rotation axis. A first magnetic detection circuit defines a first surface provided with a first and second pairs of magnetic detection elements. A signal processing unit is configured to output a signal representative of a rotation angle of the magnet based on outputs of the first and second pair of magnetic detection elements. A second magnetic detection circuit is provided with another first and second pairs of magnetic detection elements. The signal processing unit is configured to output a redundant signal corresponding to a rotation angle of the magnet based on outputs of the other first pair of magnetic detection elements and the other second pair of magnetic detection elements.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: March 3, 2020
    Assignee: MELEXIS TECHNOLOGIES SA
    Inventor: Takumi Yoshiya
  • Patent number: 10571302
    Abstract: A rotary position sensor comprises a magnetic sensor for generating two independent signals indicative of at least two different order magnetic fields, and a magnetic assembly forming a first magnetic field component having a first order at the location of the magnetic sensor, in which the first magnetic field component is rotatable relative to the magnetic sensor by receiving a first angle. The magnetic assembly is also adapted for forming a second magnetic field component having a second order, different from the first order, at the location of the magnetic sensor, in which the second magnetic field component is rotatable relative to the magnetic sensor and the first magnetic assembly by receiving a second angle. The position sensor comprises a processor for combining the two independent signals to produce a unique system state representative of the first and second angle.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: February 25, 2020
    Assignee: Melexis Technologies SA
    Inventor: Peter Vandersteegen
  • Patent number: 10571303
    Abstract: An integrated circuit for error detection comprises an input for receiving two signals, in which a first signal is representative of a physical quantity in a first range and a second signal is representative of the physical quantity in a second range. The first range and second range are different ranges that overlap. The circuit comprises a processor configured to detect an inconsistency between the two signals by taking said first and second range into account, in which this inconsistency is indicative of an error.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: February 25, 2020
    Assignee: Melexis Technologies SA
    Inventor: Javier Bilbao De Mendizabal
  • Patent number: 10554219
    Abstract: An analog-to-digital converter comprises a first quantizer arranged for yielding a first digital signal; an error signal generation block arranged for generating an error signal representative of a difference between an analog input signal and the first digital signal; an analog loop filter arranged for receiving the error signal; a second quantizer arranged for receiving an output signal of the analog loop filter and for outputting a second digital signal; a digital loop filter arranged for receiving the second digital signal and for providing an input signal to the first quantizer; and a recombiner block comprising a first recombination and a second recombination filter, and an adder circuit for adding outputs of the first and second recombination filters. The first and second recombination filters are selected to obtain an analog-to-digital converted output signal being less dependent on quantization noise caused by the first quantizer than a first digital signal.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: February 4, 2020
    Assignee: MELEXIS TECHNOLOGIES SA
    Inventors: Johan Raman, Pieter Rombouts
  • Patent number: 10539632
    Abstract: A sensor device comprising a substrate, the substrate comprising one or more magnetic sensor elements; a first elastomeric material on top of the one or more magnetic sensor elements; a magnetic layer comprising a soft magnetic metal alloy deposited by electroplating or by sputtering on top of the first elastomeric material; and optionally a second elastomeric material on top of the magnetic layer. The substrate may be a CMOS device with IMC encapsulated between two polyimide layers. The magnetic material may be annealed at 250° C. to 295° C. using a constant or rotating magnetic field having a strength in the range from 100 to 300 mTesla. The soft magnetic alloy is arranged as Integrated Magnetic Concentrator (IMC).
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: January 21, 2020
    Assignee: Melexis Technologies SA
    Inventors: Jan-Willem Burssens, Robert Racz