Patents Assigned to Membrane Technology & Research, Inc.
  • Publication number: 20150129413
    Abstract: A gas separation process for treating a gas stream containing vapors of condensable components. The process includes two membrane separation steps, the second step using membranes of lower selectivity than the first step. Advantageously, the first membrane separation step may be carried out outside the pressure-ratio-limited region and the second membrane separation step may be carried out within the pressure-ratio-limited region. The second residue stream is a desired product of the process, and the process is particularly useful for applications where the target concentration of component A in this product is low, such as below 1-2 vol %.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 14, 2015
    Applicant: MEMBRANE TECHNOLOGY AND RESEARCH, INC.
    Inventors: Yu Huang, Richard W. Baker
  • Patent number: 9017451
    Abstract: A gas separation process that utilizes ejector recycle with a membrane separation step in combination with a second separation step. The second separation step may be a second membrane separation, or may involve a different type of separation process. At least a portion of the non-product (i.e. residue) stream withdrawn from the second separation step is directed back to the ejector to form a processing loop. The ejector drives the gas flow in the loop and recycles the non-product stream to the first separation step.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: April 28, 2015
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Nicholas P. Wynn, Haiqing Lin, Meijuan Zhou, Jennifer H. Ly, Livia Serbanescu-Martin
  • Patent number: 9005335
    Abstract: A gas separation process for treating an exhaust gas stream from a combustion processes. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, and flowing a second portion of the exhaust stream and at least a portion of an off-gas stream from the carbon dioxide capture step across the feed side of a membrane, while flowing a sweep gas stream, usually air, across the permeate side, and then passing the resulting permeate sweep stream back to the combustor.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: April 14, 2015
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Richard W. Baker, Xiaotong Wei, Timothy C Merkel
  • Publication number: 20150059577
    Abstract: A membrane separation assembly that includes an integrated filter element and at least one membrane module housed within a first vessel and a second vessel containing at least one membrane module, which is stacked or aligned adjacent to the first vessel. The first vessel is configured to allow liquids to be trapped and removed from the assembly, and gases to flow to and through the membrane modules of the first vessel and the membrane modules of the second vessel, which are ultimately withdrawn from the assembly. The assembly is useful in the conditioning of fuel gas to separate methane from C2+ hydrocarbons.
    Type: Application
    Filed: November 11, 2014
    Publication date: March 5, 2015
    Applicant: MEMBRANE TECHNOLOGY AND RESEARCH, INC.
    Inventor: Kaaeid A. Lokhandwala
  • Patent number: 8945276
    Abstract: A gas-separation membrane module assembly and a gas-separation process using the assembly. The assembly includes sets of manifolds, between which are mounted arrays of membrane modules, the manifolds and membrane modules forming a stack within a pressure vessel or housing. The stacked, manifolded arrangement enables many membrane elements to be fed in parallel with the gas to be treated.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: February 3, 2015
    Assignee: Membrane Technology and Research, Inc.
    Inventor: Nicholas P. Wynn
  • Publication number: 20140366724
    Abstract: The invention is a process involving membrane-based gas separation for separating and recovering carbon dioxide emissions from combustion processes in partially concentrated form, and then transporting the carbon dioxide and using or storing it in a confined manner without concentrating it to high purity. The process of the invention involves building up the concentration of carbon dioxide in a gas flow loop between the combustion step and a membrane separation step. A portion of the carbon dioxide-enriched gas can then be withdrawn from this loop and transported, without the need to liquefy the gas or otherwise create a high-purity stream, to a destination where it is used or confined, preferably in an environmentally benign manner.
    Type: Application
    Filed: September 4, 2014
    Publication date: December 18, 2014
    Applicant: MEMBRANE TECHNOLOGY AND RESEARCH, INC.
    Inventors: Johannes G. Wijmans, Richard W. Baker, Timothy C. Merkel
  • Publication number: 20140360365
    Abstract: A gas-separation membrane module assembly and a gas-separation process using the assembly. The assembly includes sets of manifolds, between which are mounted arrays of membrane modules, the manifolds and membrane modules forming a stack within a pressure vessel or housing. The stacked, manifolded arrangement enables many membrane elements to be fed in parallel with the gas to be treated.
    Type: Application
    Filed: June 7, 2013
    Publication date: December 11, 2014
    Applicant: MEMBRANE TECHNOLOGY AND RESEARCH, INC
    Inventor: Nicholas P. Wynn
  • Patent number: 8906143
    Abstract: Disclosed herein is a membrane separation apparatus that includes an integrated filter element and a membrane element housed within a single vessel. The vessel is configured to allow liquids to be trapped and removed from the vessel, and gases to flow to and through the membrane element. The apparatus is useful in the conditioning of fuel gas to separate methane from C2+ hydrocarbons.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: December 9, 2014
    Assignee: Membrane Technology and Research, Inc.
    Inventor: Kaaeid A. Lokhandwala
  • Patent number: 8852319
    Abstract: The invention is a process involving membrane-based gas separation for separating and recovering carbon dioxide emissions from combustion processes in partially concentrated form, and then transporting the carbon dioxide and using or storing it in a confined manner without concentrating it to high purity. The process of the invention involves building up the concentration of carbon dioxide in a gas flow loop between the combustion step and a membrane separation step. A portion of the carbon dioxide-enriched gas can then be withdrawn from this loop and transported, without the need to liquefy the gas or otherwise create a high-purity stream, to a destination where it is used or confined, preferably in an environmentally benign manner.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: October 7, 2014
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Johannes G. Wijmans, Richard W. Baker, Timothy C. Merkel
  • Publication number: 20140264176
    Abstract: A process for producing syngas with a high content of carbon monoxide, reflected in a high CO:CO2 ratio. The process involves integrating membrane-based gas separation and steam methane reforming.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: Membrane Technology and Research, Inc.
    Inventors: Nicholas P. Wynn, Douglas Gottschlich, Alvin Ng
  • Patent number: 8828121
    Abstract: Disclosed herein is a process for separating components of a gas mixture using gas-separation copolymer membranes. These membranes use a selective layer made from copolymers of perfluorodioxolane monomers. The resulting membranes have superior selectivity performance for gas pairs of interest while maintaining fast gas permeance compared to membranes prepared using conventional perfluoropolymers, such as Teflon® AF, Hyflon® AD, and Cytop®.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: September 9, 2014
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Zhenjie He, Timothy C. Merkel, Yoshiyuki Okamoto, Yasuhiro Koike
  • Patent number: 8829059
    Abstract: Disclosed herein are methanol production processes that include a sweep-based membrane separation step using a membrane that is selective to carbon dioxide over hydrogen. Using the processes of the invention, the efficiency of methanol production from syngas is increased by reducing the compression requirements of the process and/or improving the methanol product yield. In certain embodiments, a hydrogen-rich stream is generated; this hydrogen-rich stream can be sent for other uses. An additional benefit is that the processes of the invention may debottleneck existing methanol plants if more syngas or carbon dioxide is available, allowing for feed of imported carbon dioxide into the synthesis loop. This is a way of sequestering carbon dioxide.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: September 9, 2014
    Assignee: Membrane Technology and Research, Inc.
    Inventor: Nicholas P. Wynn
  • Patent number: 8771637
    Abstract: Disclosed herein is a process for the production of hydrogen by autothermal reforming of natural gas, with simultaneous recovery of carbon dioxide using carbon dioxide-selective membrane separation. Residual gas from the hydrogen and carbon dioxide recovery is recycled back to the autothermal reformer.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: July 8, 2014
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Nicholas P. Wynn, Douglas E Gottschlich, Haiqing Lin
  • Publication number: 20140141139
    Abstract: Disclosed herein is a membrane separation process and system for controlling the relative concentrations of carbon dioxide, oxygen, and nitrogen within a shipping or storage container containing respiring produce. The process uses a first membrane that is selective to carbon dioxide over oxygen and nitrogen, and a second membrane that is selective to oxygen over nitrogen.
    Type: Application
    Filed: March 13, 2013
    Publication date: May 22, 2014
    Applicant: Membrane Technology and Research, Inc.
    Inventors: Douglas Gottschlich, Jonathan S. Tan
  • Publication number: 20140107388
    Abstract: Disclosed herein is a process for conditioning natural gas containing C3+ hydrocarbons, so that it can be used as combustion fuel to run gas-powered equipment, including gas engines and turbine-driven compressors, in the gas field or the gas processing plant. The claimed process use glassy polymeric membranes that are preferentially permeable to methane over C2+ hydrocarbons to produce a partially purified methane stream. The process operates at a stage cut of at least about 5%.
    Type: Application
    Filed: December 18, 2013
    Publication date: April 17, 2014
    Applicant: MEMBRANE TECHNOLOGY AND RESEARCH, INC.
    Inventors: Kaaeid A. Lokhandwala, Maliha Williamson, Sachin Joshi
  • Patent number: 8623926
    Abstract: Disclosed herein is a methanol production process that includes at least two membrane separation steps. Using the process of the invention, the efficiency of methanol production from syngas is increased by reducing the compression requirements of the process and/or improving the methanol product yield. As an additional advantage, the first membrane separation step generates a hydrogen-rich stream which can be sent for other uses. An additional benefit is that the process of the invention may debottleneck existing methanol plants if more syngas or carbon dioxide is available, allowing for feed of imported carbon dioxide into the synthesis loop. This is a way of sequestering carbon dioxide.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: January 7, 2014
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Nicholas P Wynn, Sylvie Thomas-Droz, Meijuan Zhou, Zhenjie He, Haiqing Lin
  • Publication number: 20140005285
    Abstract: Disclosed herein are methanol production processes that include a sweep-based membrane separation step using a membrane that is selective to carbon dioxide over hydrogen. Using the processes of the invention, the efficiency of methanol production from syngas is increased by reducing the compression requirements of the process and/or improving the methanol product yield. In certain embodiments, a hydrogen-rich stream is generated; this hydrogen-rich stream can be sent for other uses. An additional benefit is that the processes of the invention may debottleneck existing methanol plants if more syngas or carbon dioxide is available, allowing for feed of imported carbon dioxide into the synthesis loop. This is a way of sequestering carbon dioxide.
    Type: Application
    Filed: March 14, 2013
    Publication date: January 2, 2014
    Applicant: Membrane Technology and Research, Inc.
    Inventor: Nicholas P. Wynn
  • Publication number: 20130303819
    Abstract: Disclosed herein is a methanol-to-propylene (MTP) conversion process that utilizes a membrane separation step to increase the recycle of C2 hydrocarbons back to the MTP reactor, thereby increasing propylene product yield and reducing raw material loss.
    Type: Application
    Filed: February 25, 2013
    Publication date: November 14, 2013
    Applicant: Membrane Technology and Research, Inc.
    Inventor: Paul Su
  • Patent number: 8568510
    Abstract: A gas separation process for treating off-gas streams from reaction processes, and reaction processes including such gas separation. The invention involves flowing the off-gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, and passing the permeate/sweep gas mixture to the reaction. The process recovers unreacted feedstock that would otherwise be lost in the waste gases in an energy-efficient manner.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: October 29, 2013
    Assignee: Membrane Technology and Research, Inc
    Inventors: Johannes G Wijmans, Richard W Baker, Timothy C Merkel
  • Publication number: 20130270177
    Abstract: Processes for removing water from organic compounds, especially polar compounds such as alcohols. The processes include a membrane-based dehydration step, using a membrane that has a dioxole-based polymer selective layer or the like and a hydrophilic selective layer, and can operate even when the stream to be treated has a high water content, such as 10 wt % or more. The processes are particularly useful for dehydrating ethanol.
    Type: Application
    Filed: June 12, 2013
    Publication date: October 17, 2013
    Applicant: MEMBRANE TECHNOLOGY AND RESEARCH, INC.
    Inventors: Yu Huang, Richard W. Baker, Tiem Aldajani, Jennifer Ly