Abstract: A capacitive sensor with a calibration mechanism is provided. The capacitive sensor includes a set of sensing capacitors to generate a capacitance variation, a subtraction circuit and an integration circuit. The subtraction circuit includes a first capacitor array to generate offset-adjusting charges and a second capacitor array to generate subtraction charges according to an initial offset and a sensitivity of the sensing capacitors respectively. The integration circuit includes two input ends, wherein one of them is connected to the sensing capacitors and the subtraction circuit. During a sensing period, the integration circuit performs integration according to the capacitance variation and performs cancellation of the effect of the initial offset according to the offset-adjusting charges to generate an integration output signal that is continuously subtracted by the subtraction charges during a computing period to generate a subtraction count. A capacitive sensing method is disclosed herein as well.
Abstract: A manufacturing method for manufacturing a light-sensing structure is provided. The manufacturing method includes the steps as follows. (a) A circuit layer is formed on an upper surface of a first substrate, wherein the first substrate includes at least one light-sensing device and the circuit layer includes at least one device structure and at least one release feature that is made of metal and is formed on part of the light-sensing device and the device structure. (b) A first light-filtering layer is formed on part of the circuit layer. (c) The release feature is removed by a wet-etching process.
Abstract: A pointing device includes: a magneto-electric transducer for detecting a variation in magnetic field of a magnetic element carried on an operator due to movement of the operator relative to an original position and for generating a voltage signal based on a detection result made thereby; a sampling unit for sampling the voltage signal to generate a sampling voltage; and a processing unit operable to generate a control signal corresponding to the movement of the operator upon detecting one of that the sampling voltage is not within a voltage range and that the sampling voltage is within the voltage range while a displacement of the operator from the original position is greater than a predetermined distance. A method of enabling a pointing device to generate a control signal is also disclosed.
Abstract: Disclosed herein is a method for manufacturing a micro-electromechanical structure. The method includes the following steps. A circuitry layer having a release feature is formed on an upper surface of a first substrate. A passive layer is formed on the circuitry layer without covering the release feature. The release feature is removed to expose the first substrate by a wet etching process. A portion of the exposed first substrate is anisotropically etched. A second substrate is disposed above the circuitry layer. A cavity is formed in the lower surface of the first substrate. The cavity is filled with a polymeric material. A portion of the first substrate under the microstructure is removed to release the micro-electromechanical structure.
Abstract: A method of forming a suspension object on a monolithic substrate is provided. A silicon base layer of the monolithic substrate has a circuit layer composed of at least one wet etching region, at least one circuit region, and at least one microstructure region. The wet etching region is used to partition the circuit region and the microstructure region, and extends downwards to a surface of the silicon base layer, so as to form an etching path for etching the silicon base layer from above the substrate. Next, an upper surface and a lower surface of the silicon base layer are respectively etched through dry etching, such that the microstructure region is suspended.