Abstract: A quasi-monolithic solid-state laser in which the optical components of the laser cavity are bonded to a common substrate via mounts. The optical components and their mounts are fixedly connected to each other and to the substrate by bonding. While the gain medium is bonded to a mount made of a different material with high thermal conductivity for heat sinking, the cavity's lens and mirror components and their mounts are all made of the same material as the substrate, or a different material that is thermally matched to the substrate, and fixedly mounted on the substrate solely with bonding. The bonding is achieved with adhesive bonding, or some other form of bonding such as molecular bonding, chemically activated direct bonding or hydroxide catalysis bonding.
Type:
Application
Filed:
May 17, 2024
Publication date:
September 12, 2024
Applicant:
MENHIR PHOTONICS AG
Inventors:
Benjamin RUDIN, Florian EMAURY, Roger VALENTIN
Abstract: A quasi-monolithic solid-state laser in which the optical components of the laser cavity are bonded to a common substrate via mounts. The optical components and their mounts are fixedly connected to each other and to the substrate by bonding. While the gain medium is bonded to a mount made of a different material with high thermal conductivity for heat sinking, the cavity's lens and mirror components and their mounts are all made of the same material as the substrate, or a different material that is thermally matched to the substrate, and fixedly mounted on the substrate solely with bonding. The bonding is achieved with adhesive bonding, or some other form of bonding such as molecular bonding, chemically activated direct bonding or hydroxide catalysis bonding.
Type:
Grant
Filed:
August 4, 2020
Date of Patent:
July 2, 2024
Assignee:
MENHIR PHOTONICS AG
Inventors:
Benjamin Rudin, Florian Emaury, Roger Valentin
Abstract: A quasi-monolithic solid-state laser in which the optical components of the laser cavity are bonded to a common substrate via mounts. The optical components and their mounts are fixedly connected to each other and to the substrate by bonding. While the gain medium is bonded to a mount made of a different material with high thermal conductivity for heat sinking, the cavity's lens and mirror components and their mounts are all made of the same material as the substrate, or a different material that is thermally matched to the substrate, and fixedly mounted on the substrate solely with bonding. The bonding is achieved with adhesive bonding, or some other form of bonding such as molecular bonding, chemically activated direct bonding or hydroxide catalysis bonding.
Type:
Application
Filed:
August 4, 2020
Publication date:
September 1, 2022
Applicant:
MENHIR PHOTONICS AG
Inventors:
Benjamin RUDIN, Florian EMAURY, Roger VALENTIN