Patents Assigned to Meridian Medical Systems, LLC
  • Publication number: 20160324567
    Abstract: According to some embodiments, systems for energy delivery to targeted tissue comprise a catheter with an ablation member, a radiometer configured to detect temperature data from the targeted tissue, a processor configured to determine a calculated temperature (e.g., an extreme temperature, such as a peak or trough temperature) within the tissue by applying at least one factor to the temperature data detected by the radiometer, the processor configured to compare the calculated temperature to a setpoint and an energy source configured to energize the ablation member and to regulate delivery of ablative energy to the targeted tissue of the subject based at least in part on the comparison. In some embodiments, the factor depends on at least one characteristic of the targeted tissue. Information regarding a tissue characteristic can be provided using information from an imaging set (e.g., intracardiac echo) or an electrical signal of the subject (e.g., electrocardiogram).
    Type: Application
    Filed: March 7, 2016
    Publication date: November 10, 2016
    Applicant: Meridian Medical Systems, LLC
    Inventors: Dorin Panescu, Josef Vincent Koblish, John F. McCarthy, Robert Chris Allison
  • Publication number: 20160199131
    Abstract: According to some embodiments, an ablation system or other treatment system comprises an elongate body, a first energy delivery member positioned along the distal end of the elongate body, and at least a second energy delivery member positioned at a location proximal to the first energy delivery member, the first energy delivery member and the second energy delivery member being configured to deliver energy sufficient to at least partially ablate tissue. In some embodiments, each of the first and second energy delivery members comprises an antenna configured to receive a microwave signal corresponding to a temperature of the tissue at a location adjacent the antenna. The system further comprises at least one radiometer configured to process the microwave signals received from the antennas of the energy delivery members and configured to produce an output signal representative of tissue temperatures at depth adjacent the first and second energy delivery members.
    Type: Application
    Filed: March 18, 2016
    Publication date: July 14, 2016
    Applicants: Advanced Cardiac Therapeutics, Inc., Meridian Medical Systems, LLC
    Inventors: Robert C. Allison, John F. McCarthy
  • Patent number: 9277961
    Abstract: According to some embodiments, systems for energy delivery to targeted tissue comprise a catheter with an ablation member, a radiometer configured to detect temperature data from the targeted tissue, a processor configured to determine a calculated temperature (e.g., an extreme temperature, such as a peak or trough temperature) within the tissue by applying at least one factor to the temperature data detected by the radiometer, the processor configured to compare the calculated temperature to a setpoint and an energy source configured to energize the ablation member and to regulate delivery of ablative energy to the targeted tissue of the subject based at least in part on the comparison. In some embodiments, the factor depends on at least one characteristic of the targeted tissue. Information regarding a tissue characteristic can be provided using information from an imaging set (e.g., intracardiac echo) or an electrical signal of the subject (e.g., electrocardiogram).
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: March 8, 2016
    Assignees: Advanced Cardiac Therapeutics, Inc., Meridian Medical Systems, LLC
    Inventors: Dorin Panescu, Josef Vincent Koblish, John F. McCarthy, Robert Chris Allison
  • Publication number: 20160038229
    Abstract: The present invention provides systems and methods for radiometrically measuring temperature and detecting tissue contact during ablation. An interface module includes a first input/output (I/O) port for receiving radiometer and thermocouple signals from an integrated catheter tip (ICT) that includes a radiometer; a second I/O port for receiving ablative energy from an electrosurgical generator; a temperature display; a patient relay; a computer-readable medium storing radiometer and thermocouple parameters and instructions for causing the processor to: calculate a temperature adjacent to the ICT based on the radiometer and thermocouple signals and the parameters; causing the temperature display to display the calculated temperature; closing the patient relay to pass ablative energy from the second to the first I/O port; determining whether the ICT is in contact with tissue based on the radiometer signal. An output device indicates whether the ICT is determined to be in contact with the tissue.
    Type: Application
    Filed: April 17, 2015
    Publication date: February 11, 2016
    Applicants: Advanced Cardiac Therapeutics, Inc., Meridian Medical Systems, LLC
    Inventors: John F. McCarthy, Timothy J. Lenihan, Eric R. Kanowsky, Robert C. Allison
  • Patent number: 9226791
    Abstract: The present invention provides systems and methods for temperature-controlled ablation using radiometric feedback. An interface module may include (a) a processor; (b) a first input/output (I/O) port to receive digital radiometer and digital thermocouple signals from an integrated catheter tip (ICT); (c) a second I/O port to receive ablative energy from a generator; (d) a temperature display; (e) a patient relay; (f) a computer-readable medium storing instructions for causing the processor to: (i) calculate a temperature adjacent to the ICT based on the digital radiometer and thermocouple signals and operation parameters; (ii) cause the temperature display to display the calculated temperature; and (iii) close the patient relay to pass ablative energy received on the second I/O port to the first I/O port; and (g) a temperature control subsystem to regulate the ablative power based on the calculated temperature.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: January 5, 2016
    Assignees: Advanced Cardiac Therapeutics, Inc., Meridian Medical Systems, LLC
    Inventors: John F. McCarthy, Timothy J. Lenihan, Eric R. Kanowsky, Robert C. Allison
  • Patent number: 9014814
    Abstract: Methods and systems are provided for detecting tissue contact prior to and/or during energy delivery to tissue. For example, the methods may include calculating temperature and detecting tissue contact based on signal(s) received from a radiometer. The radiometer may provide information about whether a treatment device is in contact with the tissue, and thus provide feedback to assist a clinician in properly contacting and treating the tissue.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: April 21, 2015
    Assignees: Advanced Cardiac Therapeutics, Inc., Meridian Medical Systems, LLC
    Inventors: John McCarthy, Timothy J. Lenihan, Eric R. Kanowsky
  • Publication number: 20150105765
    Abstract: According to some embodiments, systems for energy delivery to targeted tissue comprise a catheter with an ablation member, a radiometer configured to detect temperature data from the targeted tissue, a processor configured to determine a calculated temperature (e.g., an extreme temperature, such as a peak or trough temperature) within the tissue by applying at least one factor to the temperature data detected by the radiometer, the processor configured to compare the calculated temperature to a setpoint and an energy source configured to energize the ablation member and to regulate delivery of ablative energy to the targeted tissue of the subject based at least in part on the comparison. In some embodiments, the factor depends on at least one characteristic of the targeted tissue. Information regarding a tissue characteristic can be provided using information from an imaging set (e.g., intracardiac echo) or an electrical signal of the subject (e.g., electrocardiogram).
    Type: Application
    Filed: May 22, 2014
    Publication date: April 16, 2015
    Applicants: Advanced Cardiac Therapeutics, Inc., Meridian Medical Systems, LLC
    Inventors: Dorin Panescu, Josef Vincent Koblish, John F. McCarthy, Robert Chris Allison
  • Patent number: 8961506
    Abstract: Methods and systems for treating tissue that employ a radiometer for temperature measurements and use feedback from the radiometer to regulate energy being applied to the tissue are provided. For example, methods and systems are provided for calculating temperature based on signal(s) from a radiometer, which may provide useful information about tissue temperature at depth, and automatically regulating energy applied to the tissue based on the tissue temperature.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: February 24, 2015
    Assignees: Advanced Cardiac Therapeutics, Inc., Meridian Medical Systems, LLC
    Inventors: John McCarthy, Timothy J. Lenihan, Eric R. Kanowsky, Robert C. Allison
  • Patent number: 8954161
    Abstract: The present invention provides systems and methods for radiometrically measuring temperature and detecting tissue contact during ablation. An interface module includes a first input/output (I/O) port for receiving radiometer and thermocouple signals from an integrated catheter tip (ICT) that includes a radiometer; a second I/O port for receiving ablative energy from an electrosurgical generator; a temperature display; a patient relay; a computer-readable medium storing radiometer and thermocouple parameters and instructions for causing the processor to: calculate a temperature adjacent to the ICT based on the radiometer and thermocouple signals and the parameters; causing the temperature display to display the calculated temperature; closing the patient relay to pass ablative energy from the second to the first I/O port; determining whether the ICT is in contact with tissue based on the radiometer signal. An output device indicates whether the ICT is determined to be in contact with the tissue.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: February 10, 2015
    Assignees: Advanced Cardiac Therapeutics, Inc., Meridian Medical Systems, LLC
    Inventors: John F. McCarthy, Timothy J. Lenihan, Eric R. Kanowsky, Robert C. Allison
  • Patent number: 8932284
    Abstract: Methods and systems for treating tissue that employ a radiometer for measurement and/or control are provided. For example, methods and systems are provided for radiometrically measuring temperature, such as by calculating temperature based on signal(s) from a radiometer, thereby providing useful information about tissue temperature at depth, even during an optional irrigated procedure.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: January 13, 2015
    Assignees: Advanced Cardiac Therapeutics, Inc., Meridian Medical Systems, LLC
    Inventors: John F. McCarthy, Timothy J. Lenihan, Eric R. Kanowsky, Robert C. Allison
  • Patent number: 8934953
    Abstract: Apparatus for detecting intracranial temperature and blood oxygenation includes a transducer having a working surface for placement against a patient's cranium. The transducer forms a microwave antenna having walls defining an aperture having a pair of opposite broader boundaries and a pair of opposite narrower boundaries at the working surface. The antenna is tuned to a frequency which produces a first output signal indicative of heat emanating from the cranium. An oxygen saturation sensor sharing that aperture includes a radiation emitter located at one of narrower boundaries which directs electromagnetic radiation across the aperture to a radiation detector at the other of the narrower boundaries and which produces a corresponding second output signal. A control unit includes a display and a processor for processing the signals to calculate an intracranial temperature and an oxygen saturation value for display by the control unit.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: January 13, 2015
    Assignee: Meridian Medical Systems, LLC
    Inventors: Kenneth L. Carr, Robert C. Allison
  • Patent number: 8926605
    Abstract: The present invention provides systems and methods for radiometrically measuring temperature during ablation. An interface module includes a processor; a first input/output (I/O) port configured to receive digital radiometer and thermocouple signals from an integrated catheter tip (ICT) that includes a radiometer; a second I/O port configured to receive ablative energy from an electrosurgical generator; a temperature display; a patient relay in communication with the first and second I/O ports and the processor; and a computer-readable medium storing radiometer and thermocouple operation parameters and instructions for causing the processor to: calculate a temperature adjacent to the ICT based on the radiometer and thermocouple signals and the operation parameters, causing the temperature display to display the calculated temperature, and closing the patient relay so as to pass ablative energy received on the second I/O port to the first I/O port.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: January 6, 2015
    Assignees: Advanced Cardiac Therapeutics, Inc., Meridian Medical Systems, LLC
    Inventors: John McCarthy, Timothy J. Lenihan, Eric R. Kanowsky, Robert C. Allison
  • Patent number: 8731684
    Abstract: Apparatus for aligning an ablation catheter and a temperature probe relatively for an ablation procedure includes an ablation catheter with a first antenna for ablating tissue at an ablation site in a patient's body and a temperature probe for placement in a body passage having a wall portion adjacent to the ablation site so that a second antenna in the probe is positioned opposite the first antenna. A microwave source provides a pulse modulated microwave signal to one of the antennas and a radiometer is in circuit with the other antenna. A synchronizing device in circuit with the microwave source and the radiometer enables the radiometer to synchronously detect the microwave signal so that the radiometer provides an alignment signal whose strength reflects the degree of alignment of the first and second antennas which signal may be used to control an alignment display. An alignment method using the apparatus is also disclosed.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: May 20, 2014
    Assignee: Meridian Medical Systems, LLC
    Inventors: Kenneth L. Carr, Robert C. Allison
  • Publication number: 20140018697
    Abstract: Catheter apparatus comprises a coaxial cable having proximal and distal ends. The cable includes a hollow center conductor, an outer conductor and an electrically insulating layer between the conductors. An antenna is at the distal end of the cable, and a diplexer is connected to the cable, the diplexer including a transmit path for connecting the antenna to a transmitter which transmits first frequency signals and a receive path for connecting the antenna to a receiver which detects second frequency signals the diplexer isolating the signals on the two paths from one another. A transmission line connects the cable to the diplexer, the transmission line having a segment with a tubular inner conductor one end of which is connected to the center conductor and a second end of which is adapted for connection to a coolant source, the center and inner conductors forming a continuous coolant pathway.
    Type: Application
    Filed: September 20, 2013
    Publication date: January 16, 2014
    Applicant: Meridian Medical Systems, LLC
    Inventor: Robert C. Allison
  • Publication number: 20140012132
    Abstract: Catheter apparatus comprises a coaxial cable having proximal and distal ends. The cable includes a hollow center conductor, an outer conductor and an electrically insulating layer between the conductors. An antenna is at the distal end of the cable, and a diplexer is connected to the cable, the diplexer including a transmit path for connecting the antenna to a transmitter which transmits first frequency signals and a receive path for connecting the antenna to a receiver which detects second frequency signals the diplexer isolating the signals on the two paths from one another. A transmission line connects the cable to the diplexer, the transmission line having a segment with a tubular inner conductor one end of which is connected to the center conductor and a second end of which is adapted for connection to a coolant source, the center and inner conductors forming a continuous coolant pathway.
    Type: Application
    Filed: September 4, 2013
    Publication date: January 9, 2014
    Applicant: Meridian Medical Systems, LLC
    Inventors: Kenneth L. Carr, Robert C. Allison
  • Patent number: 8574166
    Abstract: Apparatus for detecting thermal radiation emanating from two different intracranial depths in a patient includes a transducer having a surface for placement against the patient's cranium. The transducer includes a first antenna with an aperture adjacent that surface the antenna being tuned to a first frequency and producing a first signal indicative of thermal radiation received within an antenna pattern extending a first distance from the surface and a second antenna having a second aperture adjacent to that surface within the first aperture. The second antenna is tuned to a second frequency and produces a second signal indicative of radiation received within an antenna pattern extending a selected second distance from the working surface, the second distance being shorter than the first distance. The two signals are coupled to a receiver/control unit which thereupon monitors and displays the temperature at the two intracranial depths.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: November 5, 2013
    Assignee: Meridian Medical Systems, LLC
    Inventor: Kenneth L. Carr
  • Patent number: 8515554
    Abstract: A radiometric heating/sensing probe for radiating electromagnetic waves of a first frequency capable of heating tissue and detecting electromagnetic waves of a second frequency emitted by the tissue indicating tissue temperature. The probe includes a dual frequency antenna, a signal transmitting path to the antenna and a signal receiving path from the antenna to a radiometer. A diplexer connected between those paths inside the probe includes a quarter wave stub in the form of a shorted slab line-type transmission line in the signal transmitting path. The entire probe package is only about 0.4 in. long and 0.08 in. in diameter so that it can be used in many minimally invasive applications.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: August 20, 2013
    Assignee: Meridian Medical Systems, LLC
    Inventor: Kenneth L. Carr
  • Patent number: 8062228
    Abstract: Apparatus for detecting thermal radiation emanating from two different intracranial depths in a patient includes a dual-mode transducer having a working surface for placement against a patient's cranium. The transducer includes a first antenna with an aperture adjacent the working surface that first antenna being tuned to a first frequency and producing a first output signal indicative of thermal radiation received within an antenna pattern extending a selected first distance from the working surface and a second antenna having a second aperture adjacent to the working surface within the first aperture. The second antenna is tuned to a second frequency and produces a second output signal indicative of thermal radiation received within an antenna pattern extending a selected second distance from the working surface, the second distance being shorter than the first distance.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: November 22, 2011
    Assignee: Meridian Medical Systems, LLC
    Inventor: Kenneth L. Carr
  • Patent number: 7989741
    Abstract: Microwave warming apparatus includes a housing defining a heating waveguide with a heating cavity. An integral internal electrically conductive ridge projects from one of the longitudinal waveguide walls and extends along the waveguide. A slot having opposite ends extends from the outside through the ridge into the heating cavity, the slot being adapted to receive a cartridge containing a tube so that the tube extends through the slot into the heating cavity. Electromagnetic energy is coupled into the heating waveguide to heat the contents of the tube. A transducer constituted by a first receiving waveguide inside the ridge is adjacent to the slot so that when a cartridge is received in the slot, the transducer can sense the thermal radiation emanating from a segment of the tube and produce a corresponding waveguide-generated signal. A radiometer in the housing is responsive to the waveguide-generated signal and produces a temperature indicating signal.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: August 2, 2011
    Assignee: Meridian Medical Systems, LLC
    Inventor: Kenneth L. Carr
  • Patent number: 7769469
    Abstract: Medical catheter apparatus for minimally invasive applications includes a probe for radiating electromagnetic waves of a first frequency capable of heating tissue and detecting thermal emissions from that tissue of a second frequency indicative of tissue temperature. The probe has an inner conductor extending along the probe to a conductive probe tip and a concentric tubular outer conductor having a leading end spaced rearwardly from the probe tip and a closed trailing end shorted to the inner conductor. A dielectric sheath surrounds the outer conductor which sheath has a leading end spaced rearwardly from the leading end of the outer conductor. A diplexer integrated into the probe includes a filter circuit positioned inside the outer conductor and a coupling capacitor connected between a point on the inner conductor and the input of the filter circuit such that the conductors between that point and the shorted trailing end of the outer conductor constitute a quarter wave stub at the second frequency.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: August 3, 2010
    Assignee: Meridian Medical Systems, LLC
    Inventors: Kenneth L. Carr, Robert C. Allison