Abstract: A snowboard binding includes a baseplate configured to secure to an upper surface of a snowboard a high back and straps secure to the baseplate. A drive plate is secured to the upper surface of the baseplate and has a stiffness effective to change ride properties of the snowboard. The drive plate may include a laminate structure including one or more composite layers such as fiberglass, carbon fiber, aluminum, or titanium. A carriage may mount the drive plate to the snowboard and may define a recess for receiving the drive plate. Tabs may extend from the lower surface of the carriage and engage corresponding apertures in the baseplate. The tabs may have hooked end portions to secure the carriage to the baseplate.
Type:
Grant
Filed:
October 19, 2015
Date of Patent:
December 19, 2017
Assignee:
Mervin Manufacturing, Inc.
Inventors:
Paul Ferrel, Dain Engebretsen, Steven Cobb, Ryan Smith
Abstract: The present disclosure relates to snowboards and skis that include a pair of edges for each longitudinal side of the snowboard or ski. The edges are laterally spaced apart, with one edge being an outer edge and the other edge being an inner edge. The inner edge is positioned vertically lower than the outer edge. The inner edge generally engages the snow surface prior to the outer edge, and is thus a transitional edge. Transitional edges may be rounded edges. The top surface of dual-edges snowboards or ski include an inner portion flanked on each lateral side by a lateral offset. A portion of the inner portion is recessed relative to the lateral offsets. The outer edges are positioned on a base surface of the lateral offsets. The inner edges are positioned on a base surface that is below the interface between the lateral offsets and the inner portion.
Abstract: A board for transporting humans, including snow skis, water skis, snow skates and snow boards, wherein the side edges of the board are made with an undulating surface, increasing the ability to carve a turn by causing the edge to cut deeper into the supporting surface.