Abstract: The invention relates to a method of collecting information relating to a movable airfoil surface (10) of an aircraft, the method including the step of collecting the information by means of an appropriate sensor placed directly on the airfoil surface. According to the invention, a radio type sensor is used that is placed on the airfoil surface so as to face a structure (1) of the aircraft that supports the airfoil surface and so as to be in contactless radio communication with a radio transceiver (20) disposed on said structure (1), regardless of the position of the airfoil surface relative to the surface, such that the sensor receives by radio from the transceiver the energy required for collecting the information and for returning a signal representative of the information by radio to the transceiver.
Type:
Application
Filed:
June 5, 2008
Publication date:
November 26, 2009
Applicant:
MESSIER-BUGATTI
Inventors:
Thomas Lavaud, Jean Clair Pradier, Bernard Baldini
Abstract: The invention relates to an actuator for an electromechanical brake, the actuator comprising a pusher and a first drive member arranged to move the pusher in register with a stack of disks and to apply a braking pressure to the stack of disks, the actuator including a second drive member comprising a piezoelectric assembly suitable for modulating the braking pressure applied to the stack of disks. According to the invention, the piezoelectric assembly is disposed inside the actuator so as to present an end that is stationary.
Abstract: The invention relates to a telescopic actuator comprising a cylinder (1) in which a main rod (2) is mounted to slide telescopically along a sliding axis (X) between a retracted position and an extended position, the telescopic actuator including an auxiliary rod mounted to slide telescopically in the main rod along said sliding axis between a retracted position and an extended position, the actuator including controlled retaining means (30, 31, 32, 33) for retaining the auxiliary rod in the retracted position inside the main rod, the actuator further including brake means for braking sliding of the auxiliary rod in the main rod in the extension direction.
Abstract: The invention relates to an aircraft filter device comprising a hydraulic block adapted to receive removably a filter (2) comprising a vessel (3) receiving a cartridge (4), wherein the vessel is fitted internally with a pin (6) of elastically deformable material comprising firstly a key (8) that extends towards the opening of the vessel and that includes a curved end (9) that projects beyond an edge of the vessel, and secondly a finger (10) that extends towards the bottom of the vessel, and that is oriented towards the center thereof, so that when a cartridge is put into place in the vessel, the finger is pushed back by the cartridge and forces the key to retract so that its curved end no longer projects radially from the vessel, the cartridge being fitted with an external obstacle (14) that co-operates with one end of the finger in order to prevent the cartridge being withdrawn from the vessel.
Abstract: The invention relates to an aircraft filter device comprising a hydraulic block (1) adapted to receive a removable filter (2) comprising a vessel (3) that receives a cartridge (4). In accordance with the invention, an insert (21) is screwed tightly into an internal thread (20) of the hydraulic block, the insert itself having an internal thread (22) into which the vessel is screwed, the device also including rotation-preventing means (23, 32) for preventing the vessel from moving in rotation once it has been screwed into the insert.
Abstract: The invention relates to a filter device comprising a hydraulic block (1) receiving a removable filter (2) that is screwed into a first internal thread (8) of the hydraulic block. The hydraulic block receives a retaining member (101) suitable for retaining the filter axially when the filter is screwed to the hydraulic block, the hydraulic block including a second internal thread (8) that is on the same axis as the first internal thread and that receives a fastener member (102) for fastening the retaining member to the hydraulic block, the fastener member being screwed into the second internal thread with toque that is sufficient to prevent the retaining member escaping in service.
Abstract: The invention relates to axle end equipment for a vehicle, in particular an aircraft, the equipment comprising a stationary portion for securing to the axle and a rotary portion for securing to the wheel carried by the axle. According to the invention, the rotary portion comprises first remote connection means in communication with a sensor mounted on the wheel so as to put the sensor and the rotary portion of the equipment into contactless electromagnetic relationship.
Type:
Grant
Filed:
November 29, 2006
Date of Patent:
September 15, 2009
Assignee:
Messier-Bugatti
Inventors:
Jean-Clair Pradier, Eric Evenor, Thomas Lavaud, Bertrand Maes
Abstract: The invention relates to a method of controlling an electromechanical brake for a vehicle wheel, the brake including an actuator provided with a pusher that is actuated by an electric motor and that is adapted to exert a braking force selectively on friction elements in response to an actuation setpoint, the method comprising the following steps: from a braking setpoint ( F), determining a nominal position setpoint ( X) for the brake actuator; from said braking setpoint ( F), estimating a reference current (i*) that ought normally to be flowing in the motor of the actuator to apply a force equal to the braking setpoint; comparing the reference current (i*) with a current (i) actually flowing in the motor of the actuator, and deducing a position correction (xcorr); and adding the position correction to the nominal position setpoint.
Abstract: The invention relates to a wheel brake for a vehicle, in particular for an aircraft, the brake comprising a support (2) that receives at least one electromechanical actuator (1) fitted with a pusher (8) facing friction elements (3) and movable under drive from an electric motor (6) to apply a braking force selectively against the friction elements. In accordance with the invention, the actuator is non-reversible such that a reaction force applied on the pusher cannot cause the electric motor to turn, and the actuator is associated with means (30, 31, 32, 33, 34) for selectively switching off an electric power supply to the electric motor, which means allow power to be delivered to the actuator in normal circumstances, and switch off said power if: the measured speed of rotation (?mes) of the electric motor drops below a first predetermined threshold (S1); and the commanded speed of rotation ( ?) of the electric motor drops below a second predetermined threshold (S2).
Abstract: A method of distribution braking between the brakes of an aircraft. The method includes a first step of estimating a braking force objective and a steering torque objective to be achieved by the brakes of the aircraft. It also includes the steps of defining at least two groups of brakes (12, 13) and determining, for each group, a braking level that is to be achieved by the group. The braking levels being calculated in such a manner that braking performed in application of the braking levels is, at least under normal operating conditions of the brakes, in compliance with a braking force objective and with a steering torque objective.
Type:
Application
Filed:
March 13, 2007
Publication date:
August 20, 2009
Applicant:
MESSIER-BUGATTI
Inventors:
Stephane Dellac, Arnaud Jacquet, Gerard Leon Gissinger, Michel Basset, Yann Chamaillard, Jean-Pierre Garcia
Abstract: A pipe for feeding a gas into an oven, a furnaces, or the like (such as a CVI/CVD oven), and in particular into a reaction chamber structure inside the oven, is provided with a gastight tubular sealing device extending radially outward of the pipe and defining a path that is practically gastight, through which there extends the feed pipe. The tubular sealing device is preferably at least partially flexible in the transverse direction and/or the axial direction so as to accommodate positioning defects between a location situated in the reaction chamber and a location where the gas feed pipe penetrates the oven (which defects may be due, for example, to asymmetrical thermal expansion/contraction).
Type:
Grant
Filed:
February 13, 2007
Date of Patent:
July 28, 2009
Assignee:
Messier-Bugatti
Inventors:
Jean-Michel Garcia, Olivier Petitjean, Eric Sion
Abstract: Radio-frequency transmission device comprising a transmission antenna (2) and a receiving antenna (4), characterized by comprising one or more passive resonant circuits (5) positioned between the transmission and receiving antennas (2, 4).
Abstract: The invention relates to a method of feeding energy to actuators associated with the undercarriages forming the landing gear of an aircraft, the aircraft comprising: a main power supply that operates independently of rotation of wheels carried by the landing gear; and a local power supply comprising one or more local generators, each driven by rotation of a wheel carried by an undercarriage; the method of the invention comprising the following steps: in a nominal mode of operation, powering said actuators by the local power supply; and in an additional mode of operation, when the delivery of energy by the local power supply is not sufficient, providing additional energy or all of the energy required by said actuators by means of the main power supply.
Abstract: A coherent fiber preform made of carbon fibers presents holes formed from at least a first face of the preform, and the preform is densified by depositing therein a material constituting a matrix by means of a chemical vapor infiltration type process. The holes are formed by causing a plurality of non-rotary elongate tools to penetrate simultaneously, the tools being substantially mutually parallel and presenting on their surfaces roughnesses or portions in relief suitable for breaking and/or transferring fibers they encounter, the tools being caused to penetrate simultaneously by moving a support carrying the tools, and the tools being selected to have a cross-section that makes it possible to obtain in the carbon fiber preform holes that present a cross-section with a mean dimension lying in the range 50 ?m to 500 ?m.
Abstract: The invention relates to a method of managing an electromechanical brake actuator comprising an electric motor adapted to move a pusher against a stack of disks to apply a braking force to the stack of disks, selectively, the method comprising the step of causing the actuator to operate in a given operating domain in the current/speed plane in such a manner that the operating domain is selected to present a boundary having a portion that extends substantially along a constant power curve plotted in the current/speed plane.
Abstract: The invention relates to a device for selectively connecting a tire to a pneumatic unit of an aircraft, the tire forming part of a wheel mounted to rotate on a hollow axle of the aircraft, the device comprising a stator and a rotor that is mounted to rotate relative to the stator and that includes means enabling it to be rotated by the wheel. According to the invention, the stator is bell-shaped and is designed to be received as a push-fit in the axle, and includes an end wall carrying a first pneumatic port for connection to the pneumatic unit via a tube running along the inside of the axle, the rotor extending substantially inside the stator.
Abstract: Method for producing a fibrous preform, especially by needling a fiber material (e.g., discontinuous pitch-based or PAN-based fiber). A needle-penetrable mold plate (10) having at least one mold cavity (12) therein for receiving the fiber material is provided. The use of a needle-penetrable mold plate allows the mold plate having the fiber material therein to be passed freely through a linear needling device, such as a linear needling loom, without having to take rigorous care to limit a needling path to the discontinuous fiber material, as in the conventional art. The mold plate is moved relative to the needling device one or more times until a desired level of material density (sometimes measured by fiber content percentage) is attained.
Abstract: A method and apparatus are disclosed for improving densification of porous substrate using a film boiling process. In particular, the disclosed method and apparatus permit more complete densification of a substrate (i.e., densification closer to the surface of the substrate) by providing a sort of barrier that reduces cooling of the surface of the substrate being densified caused by contact with the relatively cool boiling liquid precursor of the densifying material, such as carbon. In particular, contact between the substrate and the liquid precursor is reduced using one or both of physical barriers (such as a mesh material) or structures that promote the formation of an insulating gaseous layer between the substrate and the liquid precursor (such as a plate closely spaced apart from the surface of the porous substrate).
Abstract: The present invention describes a method of CVI densification in which particular arrangements and mixtures of undensified porous substrates and partially densified porous substrates are arranged in particular ways in order to use the thermal characteristics of the partially densified porous substrates to better distribute heat throughout a CVI furnace and thereby improve densification.
Type:
Application
Filed:
October 24, 2007
Publication date:
February 26, 2009
Applicant:
MESSIER-BUGATTI
Inventors:
Kenny Chang, Patrick Loisy, Yvan Baudry
Abstract: Method and device for determining the weight and/or a characteristic value of the position of the center of gravity of an aircraft standing on the ground by means of a plurality of undercarriages, each undercarriage including at least one structural element exhibiting a variable level of stresses depending on the fraction of the weight of the aircraft transmitted to the ground through the undercarriage. The method includes the steps of a) measuring on each undercarriage at least one parameter representing the stress level of the element; and b) evaluating the characteristic value and/or the weight according to the parameters measured in step a). At least one parameter measured in step a) is a magnetic or electrical characteristic of the structural element of the undercarriage.