Patents Assigned to Mettler-Toledo GmbH
  • Patent number: 11892342
    Abstract: A parallel guide of a force transmission device has movable and fixed parallel legs, and first and second parallel guiding elements. Thin-point flexional bearings connect the parallel legs to the parallel guiding elements. The movable parallel leg is guided by the parallel guiding element on the fixed parallel leg. A force transmission lever, arranged on the fixed parallel leg, has a lever bearing, and a first lever arm. The force transmission lever is pivotably mounted on the lever bearing and the first lever arm is connected to the movable parallel leg to transmit force. The force-transmitting connection is produced by a coupling element having at least one further thin-point flexional bearing, with at least one functional region of the force transmission device being formed monolithically. A functional region associates at least one bearing point with at least one of the parallel legs, the force transmission lever, and the coupling element.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: February 6, 2024
    Assignee: Mettler-Toledo GmbH
    Inventors: Arne Burisch, Hans-Rudolf Burkhard, Stephan Baltisberger, Urs Loher, Andreas Metzger
  • Patent number: 11841282
    Abstract: A strain gauge (12, 21A, 21B, 25A, 25B, 31, 35, 41, 45) and method of manufacturing a strain gauge (12, 21A, 21B, 25A, 25B, 31, 41, 35, 45) against moisture penetration comprises or includes the step of producing a coated base or cover layer (14, 34, 44) by forming a moisture barrier coating (17) on the surface the latter.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: December 12, 2023
    Assignees: Mettler-Toledo (Changzhou) Precision Instrument Co. Ltd., Mettler-Toledo (Changzhou) Measurement Technology Co. Ltd., Mettler-Toledo International Trading (Shanghai) Co. Ltd., Mettler-Toledo GmbH
    Inventors: XiangQun Zhu, Zhiguo Shi, Lei Xu, Jean-Christophe Emery
  • Patent number: 11808619
    Abstract: A method is provided for optimizing the time required for a scale to weigh a set of ingredients. A weighing tolerance is obtained for each ingredient in the set. Based on the weighing tolerance, a readability parameter is determined for each ingredient. Based on the determined readability parameter, the scale is configured before each ingredient is weighed.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: November 7, 2023
    Assignee: Mettler-Toledo GmbH
    Inventor: Rolf Mueller
  • Patent number: 11781899
    Abstract: A verification of a pipette results in a release or a warning message. A liquid measuring container (110) receives the pipette liquid volume (VP) to be verified. A loading cell (120) is connected to the liquid measuring container in a force-transmitting manner. The loading cell outputs a measurement signal (ms) corresponding to the weight force (FG) acting thereon. A processing unit (130) detects and processes the measurement signal (ms), determines a first weight force (Gt1) at time point (t1) and determines a second weight force (Gt2) at time point (t2). The pipette liquid volume is calculated and the calculated value is assigned to a pipette volume class (Ki) having a defined class nominal value (VKi). The processing unit tests whether or not an absolute value of the volume difference (?V) is within a predetermined tolerance value (T) for the assigned pipette volume class. The processing unit outputs the test result.
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: October 10, 2023
    Assignee: Mettler-Toledo GmbH
    Inventors: Daniel Reber, Christoph Lang
  • Patent number: 11726055
    Abstract: Measurement unit for an ion-sensitive solid-state electrode, that serves to measure pH in a measurement solution, with a layered structure including an ion-sensitive glass layer with a first ring-shaped contact surface, an electrically conducting layer that directly or via at least one intermediate layer adheres to the ion-sensitive glass layer, and a substrate that adheres to the electrically conducting layer and is provided with a second ring-shaped contact surface; and with a holding member that is provided with a first ring-shaped sealing surface, a second ring-shaped sealing surface, and an annular section; wherein the first ring-shaped sealing surface is sealingly connected to the first ring-shaped contact surface, wherein the second ring-shaped sealing surface is connected to the second ring-shaped contact surface of the substrate, and wherein the first and second ring-shaped sealing surfaces of the holding member are sealingly connected by the annular section.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: August 15, 2023
    Assignee: METTLER-TOLEDO GMBH
    Inventors: Andreas Rutz, Philippe Ehrismann, Juan Limon Petersen, Corrado Barcella
  • Patent number: 11692962
    Abstract: A measuring element is disclosed for an ion-sensitive solid-contact electrode for measuring ion activity in a measurement medium. An ion-sensitive solid-contact electrode having such a measuring element and an electrochemical sensor having such a solid-contact electrode are also disclosed. The measuring element can include an ion-sensitive layer arranged to contact a measurement medium when in operation, and conductive to lithium ions; and a single-phase electrically conductive layer, which includes metallic lithium or a lithium-(0)-alloy. A solid-state electrolyte layer can be arranged between the ion-sensitive layer and the electrically conductive layer.
    Type: Grant
    Filed: January 25, 2022
    Date of Patent: July 4, 2023
    Assignee: METTLER-TOLEDO GMBH
    Inventors: Juan Limon Petersen, Andreas Rutz
  • Patent number: 11686702
    Abstract: An electrochemical sensor for potentiometric measurements in a measurement medium has a sensor head (201) at an end of a longitudinal sensor body (203). A sensing electrode (210) and a reference electrode (220) are disposed within the longitudinal sensor body. A liquid junction (223) is established between the reference electrode and the sensing electrode. The sensor is characterized by a protective outer shaft (250) into which a polymeric tube-like structure (230) is disposed, electrically isolating the protective outer shaft from a reference electrolyte.
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: June 27, 2023
    Assignee: Mettler-Toledo GmbH
    Inventors: Andreas Rutz, Daniel Zwahlen
  • Patent number: 11549966
    Abstract: The present disclosure relates an interface unit having an input for receiving an input voltage from an electrochemical measuring probe; a first transistor; a first operational amplifier; a second transistor; and a second operational amplifier. The first operational amplifier is arranged to provide a variable tension to a first source terminal of the first transistor, in accordance with a comparison between a reference voltage and a second resistor voltage, in order to control an operating point of the first transistor.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: January 10, 2023
    Assignee: METTLER-TOLEDO GMBH
    Inventor: Daniel Jungo
  • Patent number: 11480459
    Abstract: A drive device (125) is adapted for use in combination with a weighing balance (100). The drive device has a receiving unit (130), an insertion unit (U) and a locking unit (140). The receiving unit is configured to receive the insertion unit. The locking unit is movable between a locking position, in which the insertion unit is constrained from movement, and an unlocking position, in which the movement is not constrained. The locking unit is coupled to the receiving unit in a biasing manner to predispose the locking unit into the locking position. The locking unit is slidably engaged with the receiving unit to allow the locking unit to slide relative to the receiving unit when an external force is applied to move the locking unit into the unlocking position.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: October 25, 2022
    Assignee: Mettler-Toledo GmbH
    Inventors: Marc Zehnder, Aurelius Rindlisbacher
  • Patent number: 11467023
    Abstract: A windshield structure (30) is provided for a weighing balance (100) having a base body (48), a floor (46), and a load receiving arrangement (11). The base body and the floor, which is attached to the base body, are positioned horizontal to the ground surface. The load receiving arrangement has a load receiver, with the windshield structure arranged below the load receiver. The windshield structure has a central portion and a circumferential portion that surrounds the central portion. The central portion also has a topological surface with a plurality of alternating hills (32) and valleys (31) which aid in regulating airflow below the load receiver.
    Type: Grant
    Filed: February 3, 2021
    Date of Patent: October 11, 2022
    Assignee: Mettler-Toledo GmbH
    Inventors: Beat Meister, Alice Buchmann
  • Patent number: 11353416
    Abstract: A protective device is disclosed for electrochemical electrodes having a liquid junction, and a transport and retention system therefor. The protective device can include a casing which is configured as a hollow cylinder and which has a inner circumferential first protrusion; a delimiting device which together with the first protrusion delimits a first casing segment having a first inner diameter; a spacer, which is configured as a hollow cylinder having an outer diameter corresponding to the first inner diameter; and a first sealing ring and a second sealing ring between which the spacer is disposed; wherein the first sealing ring, the second sealing ring and the spacer are disposed in an interior of the first casing segment, so that the first sealing ring and the second seal ring delimit a first protection space for a liquid junction whose inner diameter corresponds to an inner diameter of the spacer.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: June 7, 2022
    Assignee: METTLER-TOLEDO GMBH
    Inventors: Corrado Barcella, Philippe Ehrismann
  • Publication number: 20220146448
    Abstract: A measuring element is disclosed for an ion-sensitive solid-contact electrode for measuring ion activity in a measurement medium. An ion-sensitive solid-contact electrode having such a measuring element and an electrochemical sensor having such a solid-contact electrode are also disclosed. The measuring element can include an ion-sensitive layer arranged to contact a measurement medium when in operation, and conductive to lithium ions; and a single-phase electrically conductive layer, which includes metallic lithium or a lithium-(0)-alloy. A solid-state electrolyte layer can be arranged between the ion-sensitive layer and the electrically conductive layer.
    Type: Application
    Filed: January 25, 2022
    Publication date: May 12, 2022
    Applicant: Mettler-Toledo GmbH
    Inventors: Juan LIMON PETERSEN, Andreas RUTZ
  • Patent number: 11327044
    Abstract: An electrochemical sensor (1, 101) has a sensor element (15, 115) with a measuring surface (8, 108) that faces a measuring medium (5) during use. The sensor element has a planar measuring element (2, 102). A sensor shaft (4, 104) has an aperture (13, 113) with a bezel (11, 111) at an end which, during use, faces the measuring medium. The sensor element is installed in the area of the aperture. The electrochemical sensor also has an annular sealing element (9, 109), which is arranged between the sensor element and the bezel. An insulator element (10, 110) is firmly and inseparably connected to the measuring element, exposing or recessing the measuring surface. Thus, the sealing element, which protects the electrochemical sensor against the ingress of measuring medium, is arranged sealingly between the insulator element and the bezel.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: May 10, 2022
    Assignee: Mettler-Toledo GmbH
    Inventors: Andreas Rutz, Juan Limon Petersen
  • Patent number: 11327008
    Abstract: A gas measurement system as disclosed can include a coherent light source, which emits a light beam; a detector; a beam path formed between the light source) and the detector; and a gas cell arranged in the beam path such that the detector receives light transmitted through the gas cell. The gas cell can include a porous ceramic and have an optical path length which is a multiple of the actual layer thickness of the gas cell. A optical element can be arranged in the beam path between the light source and the gas cell with the light beam emitted by the light being widened and unfocussed as the light beam enters the gas cell.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: May 10, 2022
    Assignee: METTLER-TOLEDO GMBH
    Inventors: Francesca Venturini, Pär Bergström, Martin Hertel
  • Patent number: 11262328
    Abstract: A measuring element is disclosed for an ion-sensitive solid-contact electrode for measuring ion activity in a measurement medium. An ion-sensitive solid-contact electrode having such a measuring element and an electrochemical sensor having such a solid-contact electrode are also disclosed. The measuring element can include an ion-sensitive layer arranged to contact a measurement medium when in operation, and conductive to lithium ions; and a single-phase electrically conductive layer, which includes metallic lithium or a lithium-(0)-alloy. A solid-state electrolyte layer can be arranged between the ion-sensitive layer and the electrically conductive layer.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: March 1, 2022
    Assignee: METTLER-TOLEDO GMBH
    Inventors: Juan Limon Petersen, Andreas Rutz
  • Patent number: 11248956
    Abstract: An optical arrangement has a light source, which emits a light beam along a first optical axis. A first reflector is provided, and a second reflector reflects light reflected by the first reflector. The first reflector has a transverse offset from the first optical axis to reflect light along a second optical axis which has a parallel offset of two times the transverse offset of the first optical axis. The second reflector reflects the light beam back to the first reflector along a third optical axis having a parallel offset with a fixed amount in a fixed transverse direction in relation to the second optical axis. The light beam is reflected by the first reflector along a fourth optical axis which has a parallel offset in relation to the first optical axis with a fixed amount counter to the fixed transverse direction.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: February 15, 2022
    Assignee: METTLER-TOLEDO GMBH
    Inventor: Frank Killich
  • Patent number: 11231314
    Abstract: A calibration weight assembly (100, 200, 300, 400, 500) has at least one calibration weight (150, 550, 750) and a transfer mechanism, and is used with a gravimetric force-measuring device (110, 210, 310, 410, 510) having a fixed region (111, 211, 311, 411, 511), a load-receiving region (112, 212, 312, 412, 512), and a measuring sensor (140, 540). The transfer mechanism has at least one poly-stable positioning element (561, 571), a first stable state of which defines a calibration position (KP) and a second stable state of which defines a resting position (RP) of the transfer mechanism. The at least one calibration weight can be coupled with the load-receiving region. The transfer mechanism, as actuated by the measuring sensor, transfers the at least one calibration weight from the calibration position to the resting position, or vice versa.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: January 25, 2022
    Assignee: Mettler-Toledo GmbH
    Inventors: Hans-Rudolf Burkhard, David Koller, Andreas Metzger, George Fankhauser
  • Patent number: 11221250
    Abstract: An electromagnetic force-compensation direct measuring system (100) has a load receiver (101), which is connected to a force-compensation device (120) via a power-transmission linkage. The system has a multipart parallel guide mechanism, which has at least two parallel-guiding members (131, 132) spaced apart by the power-transmission linkage. The force-compensation device has at least one permanent magnet (121) and a coil (122) electrically connected to a controllable electrical circuit. At least one parallel-guiding member is electrically integrated in the controllable electrical circuit. The power-transmission linkage is designed as a single-part coil body (110) such that the coil is arranged on the coil body between the parallel-guiding members and is electrically connected to the controllable electrical circuit.
    Type: Grant
    Filed: February 25, 2020
    Date of Patent: January 11, 2022
    Assignee: Mettler-Toledo GmbH
    Inventors: Daniel Reber, Adrian Birrer, Christoph Lang
  • Patent number: 11209386
    Abstract: An electrochemical sensor for potentiometric measurements in a measurement medium has a sensor head (201) at an end of a longitudinal sensor body (203). A sensing electrode (210) and a reference electrode (220) are disposed within the longitudinal sensor body. A liquid junction (223) is established between the reference electrode and the sensing electrode. The sensor is characterized by a protective outer shaft (250) with a polymeric sensor sleeve (230), which is electrically isolating, disposed within the protective outer shaft.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: December 28, 2021
    Assignee: Mettler-Toledo GmbH
    Inventors: Andreas Rutz, Daniel Zwahlen
  • Patent number: D940259
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: January 4, 2022
    Assignee: Mettler-Toledo GmbH
    Inventor: Manuel Maute