Patents Assigned to Microchips Biotech, Inc.
  • Patent number: 10780216
    Abstract: In one aspect, containment devices are provided that include a microchip element having one or more containment reservoirs that are configured to be electrically activated to open; an electronic printed circuit board (PCB) or a silicon substrate positioned adjacent to the microchip element; one or more electronic components associated with the microchip element or the PCB/silicon substrate; and a first inductive coupling device associated with the microchip element or the PCB/silicon substrate, wherein the first inductive coupling device is in operable communication with the one or more electronic components. In another aspect, implantable drug delivery devices are provided that include a body housing at least one drug payload for actively controlled release, wherein the ratio of the volume of the at least one drug payload to the total volume of the implantable drug delivery device is from about 75 ?L/cc to about 150 ?L/cc.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: September 22, 2020
    Assignee: MICROCHIPS BIOTECH, INC.
    Inventor: Robert Farra
  • Publication number: 20190366335
    Abstract: Systems and methods for sealing a plurality of reservoirs of a microchip element with a sealing grid are provided. For example, in one embodiment, a microchip element comprises a primary substrate having a plurality of reservoirs defined therein. The microchip element also includes a single continuous sealing groove defined in the primary substrate that extends around each of the plurality of reservoirs. In addition, the microchip element includes a sealing substrate comprising a single continuous sealing protrusion extending therefrom. The single continuous sealing protrusion corresponds to and is configured to mate with the single continuous sealing groove to form a hermetic bond between the primary substrate and the sealing substrate. In this manner, the single continuous sealing groove and the single continuous sealing protrusion form a sealing grid about the plurality of reservoirs.
    Type: Application
    Filed: August 20, 2019
    Publication date: December 5, 2019
    Applicant: Microchips Biotech, Inc.
    Inventor: Robert Farra
  • Patent number: 10441765
    Abstract: Containment devices and methods of manufacture and assembly are provided. In an embodiment, the device includes at least one microchip element, which includes a containment reservoir that can be electrically activated to open, and a first electronic printed circuit board (PCB) which comprises a biocompatible substrate. The first PCB may have a first side on which one or more electronic components are fixed and an opposed second side on which the microchip element is fixed in electrical connection to the one or more electronic components. The device may further include a second PCB and a housing ring securing the first PCB together with the second PCB. The microchip element may include a plurality of containment reservoirs, which may be microreservoirs, and/or which may contain a drug formulation or a sensor element.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: October 15, 2019
    Assignee: Microchips Biotech, Inc.
    Inventor: Robert Farra
  • Patent number: 10427153
    Abstract: Systems and methods for sealing a plurality of reservoirs of a microchip element with a sealing grid are provided. For example, in one embodiment, a microchip element comprises a primary substrate having a plurality of reservoirs defined therein. The microchip element also includes a single continuous sealing groove defined in the primary substrate that extends around each of the plurality of reservoirs. In addition, the microchip element includes a sealing substrate comprising a single continuous sealing protrusion extending therefrom. The single continuous sealing protrusion corresponds to and is configured to mate with the single continuous sealing groove to form a hermetic bond between the primary substrate and the sealing substrate. In this manner, the single continuous sealing groove and the single continuous sealing protrusion form a sealing grid about the plurality of reservoirs.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: October 1, 2019
    Assignee: Microchips Biotech, Inc.
    Inventor: Robert Farra
  • Patent number: 9919103
    Abstract: Containment devices and methods of manufacture and assembly are provided. In an embodiment, the containment device includes an elongated microchip element comprising one or more containment reservoirs that are configured to be electrically activated to open. The containment device also include an elongated electronic printed circuit board (PCB) comprising a substrate. The elongated PCB comprises a first side on which one or more electronic components are fixed and an opposed second side on which the elongated microchip element is fixed in electrical connection to the one or more electronic components. Further, the containment device includes an elongated housing fixed to the elongated PCB. The elongated housing is configured to hermetically seal the one or more electronic components of the elongated PCB within the elongated housing.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: March 20, 2018
    Assignee: MICROCHIPS BIOTECH, INC.
    Inventor: Robert Farra
  • Patent number: 9796583
    Abstract: Compression cold welding methods, joint structures, and hermetically sealed containment devices are provided. The method includes providing a first substrate having at least one first joint structure which comprises a first joining surface, which surface comprises a first metal; providing a second substrate having at least one second joint structure which comprises a second joining surface, which surface comprises a second metal; and compressing together the at least one first joint structure and the at least one second joint structure to locally deform and shear the joining surfaces at one or more interfaces in an amount effective to form a metal-to-metal bond between the first metal and second metal of the joining surfaces. Overlaps at the joining surfaces are effective to displace surface contaminants and facilitate intimate contact between the joining surfaces without heat input. Hermetically sealed devices can contain drug formulations, biosensors, or MEMS devices.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: October 24, 2017
    Assignee: Microchips Biotech, Inc.
    Inventors: Jonathan R. Coppeta, Kurt Shelton, Norman F. Sheppard, Jr., Douglas Snell, Catherine M. B. Santini
  • Patent number: 9700668
    Abstract: In one aspect, containment devices are provided that include a microchip element having one or more containment reservoirs that are configured to be electrically activated to open; an electronic printed circuit board (PCB) or a silicon substrate positioned adjacent to the microchip element; one or more electronic components associated with the microchip element or the PCB/silicon substrate; and a first inductive coupling device associated with the microchip element or the PCB/silicon substrate, wherein the first inductive coupling device is in operable communication with the one or more electronic components. In another aspect, implantable drug delivery devices are provided that include a body housing at least one drug payload for actively controlled release, wherein the ratio of the volume of the at least one drug payload to the total volume of the implantable drug delivery device is from about 75 ?L/cc to about 150 ?L/cc.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: July 11, 2017
    Assignee: Microchips Biotech, Inc.
    Inventor: Robert Farra
  • Publication number: 20170050009
    Abstract: Containment devices and methods of manufacture and assembly are provided. In an embodiment, the device includes at least one microchip element, which includes a containment reservoir that can be electrically activated to open, and a first electronic printed circuit board (PCB) which comprises a biocompatible substrate. The first PCB may have a first side on which one or more electronic components are fixed and an opposed second side on which the microchip element is fixed in electrical connection to the one or more electronic components. The device may further include a second PCB and a housing ring securing the first PCB together with the second PCB. The microchip element may include a plurality of containment reservoirs, which may be microreservoirs, and/or which may contain a drug formulation or a sensor element.
    Type: Application
    Filed: November 8, 2016
    Publication date: February 23, 2017
    Applicant: Microchips Biotech, Inc.
    Inventor: Robert Farra
  • Publication number: 20160354780
    Abstract: Systems and methods for sealing a plurality of reservoirs of a microchip element with a sealing grid are provided. For example, in one embodiment, a microchip element comprises a primary substrate having a plurality of reservoirs defined therein. The microchip element also includes a single continuous sealing groove defined in the primary substrate that extends around each of the plurality of reservoirs. In addition, the microchip element includes a sealing substrate comprising a single continuous sealing protrusion extending therefrom. The single continuous sealing protrusion corresponds to and is configured to mate with the single continuous sealing groove to form a hermetic bond between the primary substrate and the sealing substrate. In this manner, the single continuous sealing groove and the single continuous sealing protrusion form a sealing grid about the plurality of reservoirs.
    Type: Application
    Filed: August 19, 2016
    Publication date: December 8, 2016
    Applicant: Microchips Biotech, Inc.
    Inventor: Robert Farra
  • Patent number: 9322103
    Abstract: Selectively permeable membranes for biosensors are provided. In one embodiment, the membrane includes a polymer mixture that includes a polyurethane component, a siloxane component, and a hydrogel component, the components in the mixture in amounts of about 60 to about 80 wt % polyurethane, about 10 to about 20 wt % siloxane, and about 10 to about 20 wt % hydrogel. The membrane has a surface restructured to be hydrophilic, with the restructured surface being crosslinked ed via reactive end groups on at least one of the polyurethane, the siloxane, and the hydrogel components. In another embodiment, the membrane includes a solvent cast film which includes a mixture of a first polyether-based thermoplastic polyurethane copolymer, a polyether-based polyurethane copolymer, and, optionally, a second polyether-based thermoplastic polyurethane copolymer.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: April 26, 2016
    Assignee: Microchips Biotech, Inc.
    Inventor: Yanan Zhang