Patents Assigned to MicroGREEN Polymers
  • Patent number: 9296126
    Abstract: The present invention is directed to a deep draw microcellularly foamed polymeric container comprising a polymeric sidewall integrally connected to a polymeric base along a bottom edge. The polymeric sidewall and base are contiguous with each other and define a shape of an open top container. The polymeric sidewall and base have a contiguous inner microcellular foam structure (having average cell diameters ranging from about 5 to about 100 microns) surrounded by a smooth outer skin layer integrally connected therewith. The polymeric sidewall defines a container height and a top opening, wherein the top opening defines a top opening width, and wherein the polymeric base defines a container base width, and wherein the area defined by the top opening is greater than the area defined by the polymeric base, and wherein the ratio of the container height (h) to the top opening width (w) is greater than about 1:1 (h:w).
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: March 29, 2016
    Assignee: Microgreen Polymers, Inc.
    Inventor: Gregory L. Branch
  • Patent number: 8877331
    Abstract: The invention relates to foamed thermoplastic material articles of manufacture having an internal layered cellular structure (with segmented and varying physical properties across one or more dimensions). In one embodiment, the invention is directed to a multi-layer foamed polymeric article of manufacture having a plurality of discrete physical properties segmented across one or more dimensions, comprising: a non-laminated multi-layer polymeric object having at least one discrete outer layer positioned adjacent to a plurality of discrete inner foamed layers, wherein the at least one discrete outer layer and the plurality of discrete inner foamed layers are integral with one another, and wherein the at least one discrete outer layer has an outer layer physical property and each of the plurality of discrete inner foamed layers has a respective inner foamed layer physical property, wherein the outer layer physical property and the inner foamed layer physical property are different from each other.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: November 4, 2014
    Assignees: MicroGREEN Polymers, University of Washington
    Inventors: Krishna Nadella, Xiaoxi Wang
  • Patent number: 8858849
    Abstract: Disclosed herein are methods and pressure vessels for solid-state microcellular processing of thermoplastic rolls and sheets. In one embodiment, the present invention is directed to a method for making a gas impregnated interleaved roll, which method comprises: providing a pressure vessel having an internal pressure chamber and a rotatable shaft horizontally positioned within the pressure chamber; placing an interleaved roll about the rotatable shaft and within the pressure chamber, wherein the interleaved roll is made from a thermoplastic material sheet interleaved together with a gas-channeling material sheet; pressurizing the pressure chamber to a selected pressure; rotating the rotatable shaft having the interleaved roll thereabouts (thereby rotating the interleaved roll) while under pressure for a selected period of time; and depressurizing the internal chamber to yield the gas impregnated interleaved roll.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: October 14, 2014
    Assignee: MicroGREEN Polymers Inc.
    Inventors: Krishna V. Nadella, Steven Powers, Thomas Malone
  • Patent number: 8827197
    Abstract: The present invention relates to apparatuses and methods for making interleaved cylindrical rolls from a polymer roll and a porous roll. The interleaved rolls disclosed herein are useful for subsequent high pressure gas impregnation and solid-state foam processing. In one embodiment, an interleaving apparatus comprises: a first rotatable platform for unwinding a first cylindrical roll of a first sheet material, the first rotatable platform being rotatable about a first central axis; a second rotatable platform for unwinding a second cylindrical roll of a second sheet material, the second rotatable platform being rotatable about a second central axis; and a third rotatable platform for winding, while the first and second materials are unwinding, the first sheet material together with the second sheet material to yield the interleaved cylindrical roll, the third rotatable platform being rotatable about a third axis and proximate to the first and second rotatable platforms.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: September 9, 2014
    Assignee: MicroGREEN Polymers Inc
    Inventor: Steven Ray Powers
  • Publication number: 20140151919
    Abstract: The present invention is directed to a deep draw microcellularly foamed polymeric container comprising a polymeric sidewall integrally connected to a polymeric base along a bottom edge. The polymeric sidewall and base are contiguous with each other and define a shape of an open top container. The polymeric sidewall and base have a contiguous inner microcellular foam structure (having average cell diameters ranging from about 5 to about 100 microns) surrounded by a smooth outer skin layer integrally connected therewith. The polymeric sidewall defines a container height and a top opening, wherein the top opening defines a top opening width, and wherein the polymeric base defines a container base width, and wherein the area defined by the top opening is greater than the area defined by the polymeric base, and wherein the ratio of the container height (h) to the top opening width (w) is greater than about 1:1 (h:w).
    Type: Application
    Filed: November 26, 2013
    Publication date: June 5, 2014
    Applicant: MicroGREEN Polymers Inc.
    Inventor: Gregory L. Branch
  • Patent number: 8568125
    Abstract: Disclosed herein are roll fed air heated flotation ovens and related thermoforming systems, assemblies, and machines that enable the corrugation-free expansion of a gas impregnated thermoplastic web passing through an oven chamber (without use of a pin-chain assembly), as well as to related methods. In an embodiment, a gas impregnated thermoplastic web is conveyed and expanded through an elongated air heated oven chamber, wherein the elongated oven chamber includes a plurality of downwardly directed heated air nozzles positioned at regular intervals along and within the upper portion of the oven chamber, and a plurality of upwardly directed heated air nozzles positioned at regular intervals along and within the lower portion of the oven chamber, but staggered apart from the downwardly directed heated air nozzles such that the gas impregnated thermoplastic material web undulates in an up and down wavelike fashion, thereby minimizing sagging, bagging, puckering, and/or buckling of the web.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: October 29, 2013
    Assignee: MicroGREEN Polymers Inc.
    Inventors: Gregory Branch, Krishna Nadelia
  • Patent number: 8517709
    Abstract: Disclosed herein are methods and pressure vessels for solid-state microcellular processing of thermoplastic rolls and sheets. In one embodiment, the present invention is directed to a method for making a gas impregnated interleaved roll, which method comprises: providing a pressure vessel having an internal pressure chamber and a rotatable shaft horizontally positioned within the pressure chamber; placing an interleaved roll about the rotatable shaft and within the pressure chamber, wherein the interleaved roll is made from a thermoplastic material sheet interleaved together with a gas-channeling material sheet; pressurizing the pressure chamber to a selected pressure; rotating the rotatable shaft having the interleaved roll thereabouts (thereby rotating the interleaved roll) while under pressure for a selected period of time; and depressurizing the internal chamber to yield the gas impregnated interleaved roll.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: August 27, 2013
    Assignee: MicroGREEN Polymers, Inc.
    Inventors: Krishna V Nadella, Steven Powers, Thomas Malone
  • Publication number: 20130140320
    Abstract: A container comprises a wall and a bottom. The wall includes a thermoplastic polymer material, and forms a cylindrical shape. The thermoplastic polymer material has a microstructure that includes a plurality of closed cells, each cell containing a void and each cell having a maximum dimension extending across the void within the cell that ranges between 1 micrometer and 200 micrometers long. The bottom is joined to an end of the cylindrical shape to close the end such that the beverage and/or other items disposed inside the cylindrical shape don't escape through the end of the shape.
    Type: Application
    Filed: August 18, 2011
    Publication date: June 6, 2013
    Applicant: MICROGREEN POLYMERS INC.
    Inventors: Krishna V. Nadella, Thomas Malone, Barbara Burke, Steven Woolridge
  • Patent number: 8377548
    Abstract: The invention disclosed herein relates to relates to foamed thermoplastic material objects and articles of manufacture having an internal layered cellular structure, as well as to methods of making the same. In one embodiment, the invention is directed to a multi-layer foamed polymeric article of manufacture, comprising: a non-laminated multi-layer thermoplastic material sheet, wherein the multi-layer thermoplastic material sheet has first and second discrete outer layers sandwiching a plurality of discrete inner foamed layers, and wherein the two outer layers and plurality discrete inner foamed layers are integral with one another. The thermoplastic material may be a semi-crystalline polymer such as, for example, PET (polyethylene terephthalate), PEEK (polyetheretherketone), PEN (polyethylene napthalate), PBT (polybutylene terephthalate), PMMA (polymethyl methacrylate), PLA (polyactide), polyhydroxy acid (PHA), thermoplastic urethane (TPU), or blends thereof.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: February 19, 2013
    Assignees: MicroGREEN Polymers Inc., University of Washington
    Inventors: Krishna Nadella, Gregory Branch, Vipin Kumar, Michael A. Waggoner
  • Publication number: 20130032289
    Abstract: A method for joining two components includes positioning a thermoplastic polymer portion of a first component adjacent a thermoplastic polymer portion of a second component such that the first and second portions form an interface. At least one of the portions includes a microstructure having a plurality of closed cells, each cell containing a void and each cell having a maximum dimension extending across the void. The method also includes exerting pressure on the thermoplastic polymer portions to form a bond at the interface that holds the portions together. The plurality of closed cells, and especially those adjacent the surface of the thermoplastic polymer portion that form the interface, help isolate thermally and/or chemically the surface from the remainder of the portion.
    Type: Application
    Filed: April 19, 2011
    Publication date: February 7, 2013
    Applicants: MicroGREEN Polymers, Inc., University of Washington
    Inventors: Krishna Nadella, Xiaoxi Wang, Vipin Kumar
  • Publication number: 20120267814
    Abstract: Disclosed herein are roll fed air heated flotation ovens and related thermoforming systems, assemblies, and machines that enable the corrugation-free expansion of a gas impregnated thermoplastic web passing through an oven chamber (without use of a pin-chain assembly), as well as to related methods. In an embodiment, a gas impregnated thermoplastic web is conveyed and expanded through an elongated air heated oven chamber, wherein the elongated oven chamber includes a plurality of downwardly directed heated air nozzles positioned at regular intervals along and within the upper portion of the oven chamber, and a plurality of upwardly directed heated air nozzles positioned at regular intervals along and within the lower portion of the oven chamber, but staggered apart from the downwardly directed heated air nozzles such that the gas impregnated thermoplastic material web undulates in an up and down wavelike fashion, thereby minimizing sagging, bagging, puckering, and/or buckling of the web.
    Type: Application
    Filed: July 9, 2012
    Publication date: October 25, 2012
    Applicant: MicroGREEN Polymers Inc.
    Inventors: Gregory Branch, Krishna Nedella
  • Patent number: 8080194
    Abstract: Disclosed herein are methods and pressure vessels for solid-state microcellular processing of thermoplastic rolls and sheets. In one embodiment, the present invention is directed to a method for making a gas impregnated interleaved roll, which method comprises: providing a pressure vessel having an internal pressure chamber and a rotatable shaft horizontally positioned within the pressure chamber; placing an interleaved roll about the rotatable shaft and within the pressure chamber, wherein the interleaved roll is made from a thermoplastic material sheet interleaved together with a gas-channeling material sheet; pressurizing the pressure chamber to a selected pressure; rotating the rotatable shaft having the interleaved roll thereabouts (thereby rotating the interleaved roll) while under pressure for a selected period of time; and depressurizing the internal chamber to yield the gas impregnated interleaved roll.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: December 20, 2011
    Assignee: MicroGREEN Polymers, Inc.
    Inventors: Krishna Nadella, Steven Powers, Thomas Malone
  • Publication number: 20110081524
    Abstract: The invention disclosed herein relates to relates to foamed thermoplastic material objects and articles of manufacture having an internal layered cellular structure, as well as to methods of making the same. In one embodiment, the invention is directed to a multi-layer foamed polymeric article of manufacture, comprising: a non-laminated multi-layer thermoplastic material sheet, wherein the multi-layer thermoplastic material sheet has first and second discrete outer layers sandwiching a plurality of discrete inner foamed layers, and wherein the two outer layers and plurality discrete inner foamed layers are integral with one another. The thermoplastic material may be a semi-crystalline polymer such as, for example, PET (polyethylene terephthalate), PEEK (polyetheretherketone), PEN (polyethylene napthalate), PBT (polybutylene terephthalate), PMMA (polymethyl methacrylate), PLA (polyactide), polyhydroxy acid (PHA), thermoplastic urethane (TPU), or blends thereof.
    Type: Application
    Filed: October 5, 2010
    Publication date: April 7, 2011
    Applicant: MICROGREEN POLYMERS, INC.
    Inventors: Krishna Nadella, Gregory Branch, Vipin Kumar, Michael A. Waggoner
  • Patent number: 7807260
    Abstract: The invention disclosed herein relates to relates to foamed thermoplastic material objects and articles of manufacture having an internal layered cellular structure, as well as to methods of making the same. In one embodiment, the invention is directed to a multi-layer foamed polymeric article of manufacture, comprising: a non-laminated multi-layer thermoplastic material sheet, wherein the multi-layer thermoplastic material sheet has first and second discrete outer layers sandwiching a plurality of discrete inner foamed layers, and wherein the two outer layers and plurality discrete inner foamed layers are integral with one another. The thermoplastic material may be a semi-crystalline polymer such as, for example, PET (polyethylene terephthalate), PEEK (polyetheretherketone), PEN (polyethylene napthalate), PBT (polybutylene terephthalate), PMMA (polymethyl methacrylate), PLA (polylactide), polyhydroxy acid (PHA), thermoplastic urethane (TPU), or blends thereof.
    Type: Grant
    Filed: January 17, 2008
    Date of Patent: October 5, 2010
    Assignees: MicroGREEN Polymers, Inc., The University of Washington
    Inventors: Krishna Nadella, Gregory L. Branch, Vipin Kumar, Michael A. Waggoner
  • Publication number: 20100163450
    Abstract: The present invention is directed to a deep draw microcellularly foamed polymeric container comprising a polymeric sidewall integrally connected to a polymeric base along a bottom edge. The polymeric sidewall and base are contiguous with each other and define a shape of an open top container. The polymeric sidewall and base have a contiguous inner microcellular foam structure (having average cell diameters ranging from about 5 to about 100 microns) surrounded by a smooth outer skin layer integrally connected therewith. The polymeric sidewall defines a container height and a top opening, wherein the top opening defines a top opening width, and wherein the polymeric base defines a container base width, and wherein the area defined by the top opening is greater than the area defined by the polymeric base, and wherein the ratio of the container height (h) to the top opening width (w) is greater than about 1:1 (h:w).
    Type: Application
    Filed: March 9, 2010
    Publication date: July 1, 2010
    Applicant: MICROGREEN POLYMERS, INC.
    Inventor: Gregory L. Branch
  • Publication number: 20100112301
    Abstract: The present invention relates to apparatuses and methods for making interleaved cylindrical rolls from a polymer roll and a porous roll. The interleaved rolls disclosed herein are useful for subsequent high pressure gas impregnation and solid-state foam processing. In one embodiment, an interleaving apparatus comprises: a first rotatable platform for unwinding a first cylindrical roll of a first sheet material, the first rotatable platform being rotatable about a first central axis; a second rotatable platform for unwinding a second cylindrical roll of a second sheet material, the second rotatable platform being rotatable about a second central axis; and a third rotatable platform for winding, while the first and second materials are unwinding, the first sheet material together with the second sheet material to yield the interleaved cylindrical roll, the third rotatable platform being rotatable about a third axis and proximate to the first and second rotatable platforms.
    Type: Application
    Filed: November 4, 2009
    Publication date: May 6, 2010
    Applicant: MicroGREEN Polymers, Inc.
    Inventor: Steven Ray Powers
  • Publication number: 20100052201
    Abstract: Disclosed herein are methods for making expanded foamed polymeric panels from solid monolithic semi-crystalline thermoplastic material sheets having a first thickness, density, and volume. In one embodiment, the method comprises: absorbing an effective amount of a plasticizing gas into the semi-crystalline thermoplastic material sheet to yield a reversibly plasticized semi-crystalline thermoplastic material sheet that is differentially impregnated with the plasticizing gas to define a non-uniform gas concentration gradient across the initial first thickness; and heating the plasticized semi-crystalline thermoplastic sheet to yield the foamed polymeric panel, wherein the foamed polymeric panel comprises (1) a second thickness that is at least about three and half times greater than the first initial thickness, and (2) a non-uniform second density level that is less than the first density level.
    Type: Application
    Filed: March 3, 2009
    Publication date: March 4, 2010
    Applicant: MicroGREEN Polymers, Inc.
    Inventor: Krishna Nadella
  • Publication number: 20090104420
    Abstract: The invention disclosed herein relates to relates to foamed thermoplastic material objects and articles of manufacture having an internal layered cellular structure, as well as to methods of making the same. In one embodiment, the invention is directed to a multi-layer foamed polymeric article of manufacture, comprising: a non-laminated multi-layer thermoplastic material sheet, wherein the multi-layer thermoplastic material sheet has first and second discrete outer layers sandwiching a plurality of discrete inner foamed layers, and wherein the two outer layers and plurality discrete inner foamed layers are integral with one another. The thermoplastic material may be a semi-crystalline polymer such as, for example, PET (polyethylene terephthalate), PEEK (polyetheretherketone), PEN (polyethylene napthalate), PBT (polybutylene terephthalate), PMMA (polymethyl methacrylate), PLA (polylactide), polyhydroxy acid (PHA), thermoplastic urethane (TPU), or blends thereof.
    Type: Application
    Filed: January 17, 2008
    Publication date: April 23, 2009
    Applicant: MICROGREEN POLYMERS, INC.
    Inventors: Krishna Nadella, Gregory L. Branch, Vipin Kumar, Michael A. Waggoner
  • Patent number: 7501175
    Abstract: This invention provides packages and containers produced by a solid state method for the manufacture of foamed polymeric material. The packages are suitable for pre-cooking or sterilization, insulated transport, cooking vessel, reheating, and storage of food. The gas impregnated thermoforming (GIT) process includes interleaving an article of raw polymeric material with a gas channeling means; exposing the article to a non-reacting gas at elevated pressure to achieve a desired concentration of gas within the polymer, thereby forming a partially gas-saturated article, separating it from the gas channeling means, then decompressing, foaming and forming it at a temperature below the material's melt temperature; and finally trimming it to produce a finished foamed polymeric material and recyclable scrap solid state process foamed polymer.
    Type: Grant
    Filed: May 14, 2004
    Date of Patent: March 10, 2009
    Assignee: MicroGREEN Polymers, Inc.
    Inventors: Gregory L. Branch, Wiley D. Gunter
  • Publication number: 20050203198
    Abstract: A solid state process utilizes gas impregnation to enhance thermoforming of thermoplastic material. If the gas is plasticizing, the article is thereby plasticized for thermoforming. In some embodiments, the invention provides foaming the polymer prior to or during thermoforming by creating high levels of dissolved gas during gas exposure. Foaming may proceed spontaneously upon decompression from gas pressure, or foaming may be enhanced by heating the polymer sheet near to or above the polymer's glass transition temperature, thereby producing plasticized foamed polymer for thermoforming. When objects of unfoamed polymer are desired, foaming may be suppressed by thermoforming gas saturated articles under gas pressure. This process may be used to enhance the thermoforming performance of articles that have been previously foamed, including articles foamed by prior art processes. In some embodiments, polymer is sufficiently plasticized so that it may be thermoformed without heating.
    Type: Application
    Filed: April 13, 2005
    Publication date: September 15, 2005
    Applicant: MICROGREEN POLYMERS, INC.
    Inventors: Gregory Branch, Trevor Wardle