Patents Assigned to Microjet Technology Co., Ltd
  • Patent number: 11204027
    Abstract: A fluid system includes a fluid active region, a fluid channel, a convergence chamber and plural valves. The fluid active region includes at least one fluid-guiding unit. The fluid-guiding unit is enabled under control to transport fluid to be discharged out through the outlet aperture. The fluid channel is in communication with the outlet aperture of the fluid active region, and has plural branch channels to split the fluid discharged from the fluid active region. The convergence chamber is in communication with the fluid channel. The valves each of which is disposed in the corresponding branch channel, wherein the fluid is discharged out through the branch channels according to opened/closed states of the valves under control. The fluid system of the present disclosure is capable of acquiring required flow rate, pressure and amount of the fluid to be transported.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: December 21, 2021
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Shih-Chang Chen, Li-Pang Mo, Jia-Yu Liao, Che-Wei Huang, Chi-Feng Huang
  • Publication number: 20210381947
    Abstract: A gas detection device manufactured by a semiconductor process includes a substrate, a microelectromechanical element, a light-emitting element, a particle-sensing element, a gas-sensing element, a driving-chip element and an encapsulation layer. The driving-chip element controls driving operations of the microelectromechanical element, the light-emitting element, the particle-sensing element and the gas-sensing element, respectively. When the microelectromechanical element is enabled to actuate transportation of gas, the gas is introduced into the gas detection device through an inlet aperture of the substrate. Scattered light spots generated by the light beam of the light-emitting element irradiating on suspended particles contained in the gas are received by the particle-sensing element to generate a detection datum of the suspended particles. The gas-sensing element detects the gas passing through and generates a detection datum of hazardous gas contained in the gas.
    Type: Application
    Filed: May 26, 2021
    Publication date: December 9, 2021
    Applicant: Microjet Technology Co., Ltd.
    Inventors: Hao-Jan Mou, Ying-Lun Chang, Hsien-Chung Tai, Chin-Chuan Wu, Chi-Feng Huang, Yung-Lung Han, Chin-Wen Hsieh
  • Publication number: 20210378530
    Abstract: A blood pressure detection device manufactured by a semiconductor process includes a substrate, a microelectromechanical element, a gas-pressure-sensing element, a driving-chip element, an encapsulation layer and a valve layer. The substrate includes inlet apertures. The microelectromechanical element and the gas-pressure-sensing element are stacked and integrally formed on the substrate. The encapsulation layer is encapsulated and positioned on the substrate. A flowing-channel space is formed above the microelectromechanical element and the gas-pressure-sensing element. The encapsulation layer includes an outlet aperture in communication with an airbag. The driving-chip element controls the microelectromechanical element, the gas-pressure-sensing element and valve units to transport gas.
    Type: Application
    Filed: June 2, 2021
    Publication date: December 9, 2021
    Applicant: Microjet Technology Co., Ltd.
    Inventors: Hao-Jan MOU, Ying-Lun CHANG, Ching-Sung LIN, Chi-Feng HUANG, Yung-Lung HAN, Chang-Yen TSAI, Wei-Ming LEE, Chun-Yi KUO, Tsung-I LIN
  • Patent number: 11193479
    Abstract: A fluid system includes a fluid active region, a fluid channel, a convergence chamber, a sensor and plural valves. The fluid active region includes at least one fluid-guiding unit. The fluid-guiding unit is enabled under control to transport fluid to be discharged out through an outlet aperture. The fluid channel is in communication with the outlet aperture of the fluid active region, and has plural branch channels for splitting the fluid discharged from the fluid active region. The convergence chamber is in communication with the fluid channel. The sensor is disposed in the fluid channel for measuring fluid. The valves each of which is disposed in the corresponding branch channel, wherein the fluid is discharged out through the branch channels according to opened/closed states of the valves under control. The fluid system is capable of acquiring required flow rate, pressure and amount of the fluid to be transported.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: December 7, 2021
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Chi-Feng Huang, Yung-Lung Han, Wei-Ming Lee
  • Publication number: 20210369503
    Abstract: The present disclosure provides a medical negative pressure lamination component including an airtight patch, a dressing patch, a battery module, a slim-type pump and a sensing and controlling module. The airtight patch includes a communication portion and a dressing area in fluid communication with each other. The dressing patch is accommodated in the dressing area. The slim-type pump is electrically connected to the battery module. The sensing and controlling module is electrically connected to the battery module and the slim-type pump, and detects and controls a gas pressure and a gas flow provided by the slim-type pump. The dressing patch is attached on the skin surface, and is covered and accommodated by the airtight patch. When the slim-type pump is actuated, the air between the airtight patch and the skin surface is drawn out by the slim-type pump through the communication portion, and a negative pressure is formed therebetween.
    Type: Application
    Filed: May 20, 2021
    Publication date: December 2, 2021
    Applicant: Microjet Technology Co., Ltd.
    Inventors: Hao-Jan Mou, Chung-Wei Kao, Jia-Yu Liao, Hung-Hsin Liao, Chi-Feng Huang, Yung-Lung Han
  • Patent number: 11187215
    Abstract: An air quality notification device is disclosed. The air quality notification device includes an actuating and sensing module, a microprocessor, a first communication module and a power source. The actuating and sensing module includes a sensor and an actuating device. The actuating device is disposed near the sensor. The sensor senses air transmitted by the actuating device to generate air quality information. The microprocessor is electrically connected to the actuating and sensing module. The first communication module is electrically connected to the actuating and sensing module to receive and transmit the air quality information. The power source is electrically connected to the microprocessor.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: November 30, 2021
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Ta-Wei Hsueh, Li-Pang Mo, Shih-Chang Chen, Ching-Sung Lin, Chi-Feng Huang, Yung-Lung Han
  • Patent number: 11187226
    Abstract: An actuating-type gas guiding device includes a main body and a piezoelectric actuator. The piezoelectric actuator is disposed in the main body. The piezoelectric actuator includes a suspension plate, an outer frame, at least one bracket and a piezoelectric element. The suspension plate has a first surface and a second surface. The suspension plate is permitted to undergo a bending vibration. The outer frame is arranged around the suspension plate. The at least one bracket is connected between the suspension plate and the outer frame for elastically supporting the suspension plate. The piezoelectric element is attached on the first surface of the suspension plate. In response to a voltage applied to the piezoelectric element, the suspension plate is driven to undergo the bending vibration in a reciprocating manner. Consequently, gas is guided to flow in the main body along a non-scattered linear direction.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: November 30, 2021
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Chi-Feng Huang, Yung-Lung Han, Chang-Yen Tsai, Wei-Ming Lee, Hsuan-Kai Chen
  • Patent number: 11187687
    Abstract: A VOC detecting and warning method is provided. Firstly, an actuating-and-sensing module having a gas transportation actuator and a gas sensor is provided. Then, the gas transportation actuator guides a specified amount of gas to the gas sensor for obtaining plural monitored values, each of which is generated according to a result of detecting volatile organic compounds of the gas in each monitoring time interval by the gas sensor. All the monitored values obtained in a unit time period are added together, so that an accumulated comparison value is obtained. If the accumulated comparison value is determined greater than an injury threshold defined according to the VOC inhalation amount affecting the health of a human body, the actuating-and-sensing module issues a warning notification to notify the user to take protective measures.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: November 30, 2021
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Ta-Wei Hsueh, Ching-Sung Lin, Chi-Feng Huang, Yung-Lung Han, Chang-Yen Tsai
  • Patent number: 11187225
    Abstract: An air quality notification device includes an actuating and sensing module and a first communication module. The actuating and sensing module includes a sensor and an actuating device. The sensor is disposed near the actuating device and senses air transmitted by the actuating device to generate air quality information. The first communication module is electrically connected to the actuating and sensing module to receive and transmit the air quality information.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: November 30, 2021
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Chi-Feng Huang, Yung-Lung Han, Chang-Yen Tsai, Hsuan-Kai Chen, Wei-Ming Lee
  • Publication number: 20210363984
    Abstract: A fluid transportation actuator is disclosed and includes a silencing jet orifice plate, a chamber frame, an actuator, an insulation frame and a conductive frame. The silencing jet orifice plate includes a silencing plate, a suspension plate and a central aperture. The suspension plate is permitted to undergo a bending vibration. The central aperture is formed on a center of the suspension plate. The silencing plate is disposed and fixed in the central aperture disposed at the center of the suspension plate. The chamber frame is stacked on the suspension plate. The actuator is stacked on the chamber frame. The actuator generates the bending vibration in a reciprocating manner as a voltage is applied thereto. The actuator includes a piezoelectric-thin-plate pin. The insulation frame is stacked on the actuator. The conductive frame is stacked on the insulation frame and includes a conductive-frame pin.
    Type: Application
    Filed: May 7, 2021
    Publication date: November 25, 2021
    Applicant: Microjet Technology Co., Ltd.
    Inventors: Hao-Jan Mou, Jyun-Yi Jhang, Chun-Lung Tseng, Shih-Chang Chen, Jia-Yu Liao, Chi-Feng Huang, Yung-Lung Han, Yang Ku, Yi-Ting Lu
  • Publication number: 20210361031
    Abstract: A dynamic pressure controlling footwear is disclosed and includes a main body, a control box and plural dynamic pressure controlling components. The main body includes a vamp disposed on an airbag. The control box includes a microprocessor and is disposed on a top surface region of the vamp. Each dynamic pressure controlling component is positioned on the airbag and includes an actuating pump and a pressure sensor packaged on a substrate by a semiconductor process. The substrate is positioned on the airbag and electrically connected to the microprocessor of the control box through a conductor. The actuating pump is in fluid communication with the airbag for inflating the airbag. The pressure sensor detects an inner pressure of the airbag to generate a pressure information. The microprocessor enables or disables the actuating pump according to the pressure information, so that the inner pressure of the airbag is adjusted.
    Type: Application
    Filed: May 7, 2021
    Publication date: November 25, 2021
    Applicant: Microjet Technology Co., Ltd.
    Inventors: Hao-Jan Mou, Ching-Sung Lin, Chih-Kai Chen, Chi-Feng Huang, Yung-Lung Han, Chang-Yen Tsai, Wei-Ming Lee
  • Patent number: 11169069
    Abstract: A particle detecting module is provided. The particle detecting module includes a base, a piezoelectric actuator, a driving circuit board, a laser component, a particulate sensor and an outer cover. A gas-guiding-component loading regain and a laser loading region are separated by the base. By the design of the gas flowing path, the driving circuit board covering the bottom surface of the base, and the outer cover covering the surfaces of the base, an inlet path is defined by the gas inlet groove of the base, and an outlet path is defined by a gas outlet groove of the base. Consequently, the thickness of the particle detecting module is drastically reduced.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: November 9, 2021
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Ching-Sung Lin, Chin-Chuan Wu, Chih-Kai Chen, Yung-Lung Han, Chi-Feng Huang, Chang-Yen Tsai
  • Publication number: 20210343924
    Abstract: A heterogeneous integration chip of a micro fluid actuator is disclosed and includes a first substrate, a first insulation layer, a first conductive layer, a piezoelectric layer, a second conductive layer, a second substrate, a control element, a perforated trench and a conductor. The first substrate includes a first chamber. The first insulation layer is disposed on the first substrate. The first conductive layer is disposed on the first insulation layer and includes an electrode pad. The piezoelectric layer and the second conductive layer are stacked on the first conductive layer sequentially. The second substrate is assembled to the first substrate through a bonding layer to define a second chamber and includes an orifice, a fluid flowing channel and a third chamber. The control element is disposed in the second substrate. The perforated trench filled with the conductor is penetrated from the electrode pad to the second substrate.
    Type: Application
    Filed: April 27, 2021
    Publication date: November 4, 2021
    Applicant: Microjet Technology Co., Ltd.
    Inventors: Hao-Jan Mou, Hsien-Chung Tai, Lin-Huei Fang, Yung-Lung Han, Chi-Feng Huang, Chun-Yi Kuo, Tsung-I Lin, Chin-Wen Hsieh
  • Patent number: 11162488
    Abstract: A fluid system includes a fluid active region, a fluid channel, a convergence chamber and plural valves. The fluid active region includes one or plural fluid-guiding units. Each fluid-guiding unit includes an inlet plate, a substrate, a resonance plate, an actuating plate, a piezoelectric element and an outlet plate, which are stacked sequentially. The piezoelectric element is attached on the actuating plate. When the piezoelectric element drives a bending resonance of the actuating plate, the fluid is transported into the fluid-guiding units and pressurized to be discharged out. The fluid channel includes plural branch channels. The fluid discharged from the fluid active region is split by the branch channels. The convergence chamber is in communication with the fluid channel. The valves are disposed in the branch channels. The fluid is transported through the branch channels according to the open/closed states of the valves.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: November 2, 2021
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Chi-Feng Huang, Wei-Ming Lee, Hsuan-Kai Chen
  • Patent number: 11162487
    Abstract: An air circulation control device includes a casing and at least one air pump. The casing includes at least one entrance opening, at least one exit opening and an accommodation space. Each air pump is disposed in and closes the corresponding entrance opening. Each air pump includes a first protective film that is a waterproof and dustproof film structure allowing gas to pass therethrough. When the air pump is enabled, the gas is introduced into the accommodation space through the entrance opening and discharged from the accommodation space through the exit opening, so that the gas is circulated.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: November 2, 2021
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Shih-Chang Chen, Jia-Yu Liao, Hung-Hsin Liao, Chi-Feng Huang, Wei-Ming Lee
  • Publication number: 20210332834
    Abstract: An actuating and sensing module is disclosed and includes a bottom plate, a gas pressure sensor, a thin gas transportation device and a cover plate. The bottom plate includes a pressure relief orifice, a discharging orifice and a communication orifice. The gas pressure sensor is disposed on the bottom plate and seals the communication orifice. The thin gas transportation device is disposed on the bottom plate and seals the pressure relief orifice and the discharging orifice. The cover plate is disposed on the bottom plate and covers the gas pressure sensor and the thin gas-transportation device. The cover plate includes an intake orifice. The thin gas transportation device is driven to inhale gas through the intake orifice, the gas is then discharged through the discharging orifice by the thin gas transportation device, and a pressure change of the gas is sensed by the gas pressure sensor.
    Type: Application
    Filed: April 19, 2021
    Publication date: October 28, 2021
    Applicant: Microjet Technology Co., Ltd.
    Inventors: Hao-Jan MOU, Shih-Chang CHEN, Jia-Yu LIAO, Hung-Hsin LIAO, Chung-Wei KAO, Chi-Feng HUANG, Yung-Lung HAN, Chang-Yen TSAI, Wei-Ming LEE
  • Publication number: 20210332810
    Abstract: An actuating and sensing module is disclosed and includes a bottom plate, terminals, a control chip, a partition plate, a gas pressure sensor, a thin gas transportation device and a cover plate. The bottom plate includes terminal grooves, a recess, a gas outlet and a gas relief aperture. The terminals are disposed in the terminal grooves. The control chip is disposed in the recess. The partition plate is stacked on the bottom plate and includes an outlet opening in communication with the gas outlet and a pressure relief orifice corresponding to the gas relief aperture. The thin gas transportation device seals the gas outlet and the pressure relief orifice. The cover plate includes an opening passed through by the thin gas transportation device. The gas is transported to the outlet opening by the thin gas transportation device and sensed by the gas pressure sensor disposed in the outlet opening.
    Type: Application
    Filed: April 14, 2021
    Publication date: October 28, 2021
    Applicant: Microjet Technology Co., Ltd.
    Inventors: Hao-Jan Mou, Shih-Chang Chen, Jia-Yu Liao, Hung-Hsin Liao, Chung-Wei Kao, Chi-Feng Huang, Yung-Lung Han, Chang-Yen Tsai, Yang Ku
  • Publication number: 20210291523
    Abstract: A narrow type inkjet print head chip is disclosed and includes a silicon substrate, an active component layer and a passive component layer. The active component layer is stacked on the silicon substrate and includes plural ESD protection units, plural encoder switches, plural discharge protection units and plural heater switches. The ESD protection units, the encoder switches, the discharge protection units and the heater switches are disposed in each of at least two high-precision regions of the active component layer. The corresponding positions and quantities of these components are the same in the at least two high-precision regions. The passive component layer is stacked on the active component layer and includes plural heaters, plural electrode pads, plural encoders and plural circuit traces. The circuit traces are electrically connected to the ESD protection units, the encoder switches, the heater switches, the heaters, the electrode pads and the encoders.
    Type: Application
    Filed: March 19, 2021
    Publication date: September 23, 2021
    Applicant: Microjet Technology Co., Ltd.
    Inventors: Hao-Jan Mou, Rong-Ho Yu, Cheng-Ming Chang, Hsien-Chung Tai, Wen-Hsiung Liao, Chi-Feng Huang, Yung-Lung Han
  • Publication number: 20210291525
    Abstract: A manufacturing method of narrow type inkjet print head chip is provided and includes steps of: (S1) providing a silicon substrate; (S2) arranging and disposing an active component layer by utilizing a first type photomask on at least two high-precision regions of each of a plurality of inkjet print head chip regions on the silicon substrate; (S3) arranging and disposing a passive component layer by utilizing a second type photomask on the active component layer; and (S4) cutting the silicon substrate according to the inkjet print head chip regions so as to form the plurality of narrow type inkjet print head chips.
    Type: Application
    Filed: March 18, 2021
    Publication date: September 23, 2021
    Applicant: Microjet Technology Co., Ltd.
    Inventors: Hao-Jan Mou, Rong-Ho Yu, Cheng-Ming Chang, Hsien-Chung Tai, Wen-Hsiung Liao, Chi-Feng Huang, Yung-Lung Han
  • Patent number: 11125224
    Abstract: An actuating and sensing module is disclosed and includes an actuating device, a first substrate, a second substrate, a valve membrane and a sensor stacked sequentially. The first substrate includes an intake channel, an exhaust channel, an inlet and an outlet. The valve membrane is disposed between the first substrate and the second substrate and includes an intake valve and an exhaust valve to insulate the intake channel and the exhaust channel, respectively. The actuating device is disposed to seal a through slot of the second substrate to form a compressing chamber. The inlet, the intake channel, the compressing chamber, the exhaust channel and the outlet are in communication with each other to define a gas flow loop. The sensor is disposed in the gas flow loop. While the actuating device drives gas from the outside, the gas is transported into the gas flow loop and sensed by the sensor.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: September 21, 2021
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Shih-Chang Chen, Jia-Yu Liao, Shou-Hung Chen, Hung-Hsin Liao, Chiu-Lin Lee, Mei-Yen Chen, Chi-Feng Huang, Yung-Lung Han