Abstract: The method for machining a series of workpieces (21) via at least one machining jet includes the following steps: each workpiece (21) is associated with an identifier for uniquely identifying the workpiece, during the machining of a respective workpiece, the temporal characteristic of the machining jet is detected by at least one sensor (30), the detected temporal characteristic is evaluated so as to obtain at least one comparative value, and for detecting incorrect machining, the at least one comparative value is compared with at least one threshold value.
Abstract: The method for machining a series of workpieces (21) via at least one machining jet includes the following steps: each workpiece (21) is associated with an identifier for uniquely identifying the workpiece, during the machining of a respective workpiece, the temporal characteristic of the machining jet is detected by at least one sensor (30), the detected temporal characteristic is evaluated so as to obtain at least one comparative value, and for detecting incorrect machining, the at least one comparative value is compared with at least one threshold value.
Abstract: In the method for cutting a material layer (20) along a given cutting line (21), a cutting beam is moved so as to impinge on the material layer (20) laterally offset by a distance (W) from the cutting line (21). The distance (W) is determined as a function of the variations of the cutting speed at which the cutting beam is moved, and/or as a function of the deviations of the effective cutting beam cross-section from a circular shape.
Abstract: The machining device for machining a workpiece by means of at least one fluid jet comprises a workpiece support (20) for supporting the workpiece and a catch basin (29) for dissipating the energy of the at least one fluid jet after its penetration of the workpiece. The catch basin (29) is arranged in a free-standing manner in relation to the workpiece support (20) in order to avoid the transmission of vibrations from the catch basin to the workpiece support.
Abstract: In the method for cutting a material layer (20) along a given cutting line (21), a cutting beam is moved so as to impinge on the material layer (20) laterally offset by a distance (W) from the cutting line (21). The distance (W) is determined as a function of the variations of the cutting speed at which the cutting beam is moved, and/or as a function of the deviations of the effective cutting beam cross-section from a circular shape.