Patents Assigned to Micrometal Technologies, Inc.
  • Patent number: 11246248
    Abstract: An RFI/EMI shielding material composed of a conductive multi-fiber having a plurality of metalized monofilaments, each monofilament having a core of stainless steel or low carbon steel with an initial diameter and at least two layers of metal or metal alloy electroplated on the core which is drawn after electroplating to a final diameter less than the initial diameter, in the range of about 45-80 ?m.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: February 8, 2022
    Assignee: Micrometal Technologies, Inc.
    Inventor: Thomas F. Burke
  • Patent number: 11013158
    Abstract: An RFI/EMI shielding material composed of a conductive multi-fiber having a plurality of metalized monofilaments, each monofilament including a composite core of copper clad stainless steel or low carbon steel reduced to an intermediate diameter, and at least one layer of metal or metal alloy electroplated on the clad copper of the composite core, where each of the monofilaments is drawn after electroplating to a final diameter less than the intermediate diameter, in the range of about 45-78 ?m.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: May 18, 2021
    Assignee: MICROMETAL TECHNOLOGIES, INC.
    Inventor: Thomas F. Burke
  • Patent number: 10314215
    Abstract: A yarn or multi-fiber formed of a plurality of micron diameter stainless steel monofilaments which have been rendered more conductive by one or more coatings of electrolytically-deposited metal or metal alloy materials. The metallized yarn provided by the invention has a very low electrical resistance, with consequent benefit in electrical performance, and is particularly useful as an RFI/EMI shielding material.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: June 4, 2019
    Assignee: MICROMETAL TECHNOLOGIES, INC.
    Inventors: Thomas F. Burke, James E. Haller
  • Publication number: 20140202757
    Abstract: A yarn or multi-fiber formed of a plurality of micron diameter stainless steel monofilaments which have been rendered more conductive by one or more coatings of electrolytically-deposited metal or metal alloy materials. The metallized yarn provided by the invention has a very low electrical resistance, with consequent benefit in electrical performance, and is particularly useful as an RFI/EMI shielding material.
    Type: Application
    Filed: March 28, 2014
    Publication date: July 24, 2014
    Applicant: MicroMetal Technologies, Inc.
    Inventors: Thomas F. Burke, James E. Haller
  • Patent number: 8722186
    Abstract: A yarn or multi-fiber formed of a plurality of micron diameter stainless steel monofilaments which have been rendered more conductive by one or more coatings of electrolytically-deposited metal or metal alloy materials. The metallized yarn provided by the invention has a very low electrical resistance, with consequent benefit in electrical performance, and is particularly useful as an RFI/EMI shielding material.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: May 13, 2014
    Assignee: Micrometal Technologies, Inc.
    Inventors: Thomas F. Burke, James E. Haller
  • Patent number: 7923390
    Abstract: A yarn or multi-fiber formed of a plurality of micron diameter stainless steel monofilaments which have been rendered more conductive by one or more coatings of electrolytically-deposited metal or metal alloy materials. The metallized yarn provided by the invention has a very low electrical resistance, with consequent benefit in electrical performance, and is particularly useful as an RFI/EMI shielding material.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: April 12, 2011
    Assignee: Micrometal Technologies, Inc.
    Inventors: Thomas F. Burke, James E. Haller
  • Publication number: 20090050362
    Abstract: A yarn or multi-fiber formed of a plurality of micron diameter stainless steel monofilaments which have been rendered more conductive by one or more coatings of electrolytically-deposited metal or metal alloy materials. The metallized yarn provided by the invention has a very low electrical resistance, with consequent benefit in electrical performance, and is particularly useful as an RFI/EMI shielding material.
    Type: Application
    Filed: July 11, 2008
    Publication date: February 26, 2009
    Applicant: Micrometal Technologies, Inc.
    Inventors: Thomas F. Burke, James E. Haller
  • Patent number: 7113131
    Abstract: A metallized substrate, such as used to make a resonant circuit tag with inductive and capacitive elements in series, has a thin inorganic or polymeric dielectric layer formed on a metal layer. The inorganic layer may be formed by anodizing a surface of the metal layer. The organic layer may be formed by flexographic printing. In both cases, a via hole is formed through the dielectric layer. A second layer of very thin conductive metal is deposited on the dielectric layer and in the via hole. The substrate is subsequently patterned with an etch resist and then etched to form the inductor coil and the capacitor plates, which are interconnected via the metallized via hole.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: September 26, 2006
    Assignee: Micrometal Technologies, Inc.
    Inventor: Thomas F. Burke
  • Patent number: 6835412
    Abstract: A metallized substrate, such as used to make a resonant circuit tag with inductive and capacitive elements in series, has a thin inorganic or polymeric dielectric layer formed on a metal layer. The inorganic layer may be formed by anodizing a surface of the metal layer. The organic layer may be formed by flexographic printing. In both cases, a via hole is formed through the dielectric layer. A second layer of very thin conductive metal is deposited on the dielectric layer and in the via hole. The substrate is subsequently patterned with an etch resist and then etched to form the inductor coil and the capacitor plates, which are interconnected via the metallized via hole.
    Type: Grant
    Filed: May 2, 2002
    Date of Patent: December 28, 2004
    Assignee: Micrometal Technologies, Inc.
    Inventor: Thomas F. Burke