Patents Assigned to Microoncology Limited
  • Patent number: 8049516
    Abstract: Apparatus for detecting a discontinuity within a non-biological element located within a biological structure, the apparatus comprising: a microwave energy source; a first antenna coupled to the microwave energy source and arranged to transmit the microwave energy into the biological structure; a second antenna arranged to receive at least a portion of the transmitted microwave energy; an antenna carrier arranged to have the first and second antenna affixed thereon and including means for moving the first and second antenna with respect to the biological structure; and a signal processing unit coupled to the second antenna arranged to determine the phase and/or magnitude response of the received microwave energy as a function of the position of the antennas with respect to the biological structure and provide an indication of the location of the discontinuity within the non-biological element according to the phase and/or magnitude response.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: November 1, 2011
    Assignees: Creo Medical Llimited, Microoncology Limited
    Inventors: Christopher Paul Hancock, John Bishop, Martin Wynford Booton
  • Publication number: 20100296977
    Abstract: A sterilisation system having a controllable (e.g. adjustably modulatable) non-ionising microwave radiation source for providing microwave energy for combining with a gas (e.g. an inert gas or a mixture of inert gases) to produce atmospheric low temperature plasma for sterilising biological tissue surfaces or the like. A plasma generating region may be contained in a hand held plasma applicator. The system may include an impedance adjustor e.g. integrated in the plasma applicator arranged to set a plasma strike condition and plasma sustain condition. The gas and microwave energy may be transported to a plasma generating region along an integrated cable assembly. The integrated cable assembly may provide a two way gas flow arrangement to permit residual gas to be removed from the surface. Invasive surface plasma treatment is therefore possible. The plasma applicator may have multiple plasma emitters to produce a line or blanket of plasma.
    Type: Application
    Filed: November 6, 2008
    Publication date: November 25, 2010
    Applicant: Microoncology Limited
    Inventor: Christopher Paul Hancock
  • Publication number: 20100247403
    Abstract: Sterilisation apparatus arranged controllably to generate and emit hydroxyl radicals. The apparatus includes an applicator which receives RF or microwave energy, gas and water mist in a hydroxyl radical generating region. The impedance at the hydroxyl radical generating region is controlled to be high to promote creation of an ionisation discharge which in turn generates hydroxyl radicals when water mist is present. The applicator may be a coaxial assembly or waveguide. A dynamic tuning mechanism e.g. integrated in the applicator may control the impedance at the hydroxyl radical generating region. The mist and/or gas and/or energy delivery means may be integrated with each other.
    Type: Application
    Filed: November 6, 2008
    Publication date: September 30, 2010
    Applicant: Microoncology Limited
    Inventor: Christopher Paul Hancock
  • Publication number: 20100228244
    Abstract: A surgical antenna for radiating microwave energy (e.g. frequency 500 MHz to 60 GHz) from a e.g. ceramic insertion tip (60) into biological tissue is disclosed. The tip is provided at the end of an elongate body which delivers the microwave energy to the tip via an inner conductor (30), an outer conductor (20) surrounding the inner conductor and a dielectric material (50) therebetween. The impedance of the insertion tip (60) is selected to improve impedance matching with the complex conjugate of the complex impedance of the tissue at a treatment frequency. For example the insertion tip may act as or include at least one quarter wavelength impedance transformer. By closely matching the antenna's impedance to the tissue, dynamic tuning (if used) can be performed much more efficiently. Impedance matching at the tip can also focus the radiated energy distribution.
    Type: Application
    Filed: October 9, 2007
    Publication date: September 9, 2010
    Applicant: MICROONCOLOGY LIMITED
    Inventors: Christopher P. Hancock, Malcolm White