Abstract: A high performance linear actuator for a memory storage device includes a carriage having bearings at opposed sides thereof for engaging a pair of rail members. One of the pair of rail members is preloaded against the respective carriage bearings to provide structural stiffness and increased resonant frequency to the carriage assembly. Another set of bearings straddle a third rail member extending medially between the pair of rail members. An electromagnetic coil motor is secured to the carriage and disposed to engage an E-frame driving magnet, with the force vector of the coil extending parallel to the rail members and proximate to the center of gravity of the carriage assembly. A plurality of read/write heads is secured laterally adjacent to the electromagnetic assembly and extend toward the magnetic storage medium. The E-frame is closed at both ends to prevent flux leakage. An electronic latch under program control engages and immobilizes the carriage whenever the system is not operating.
Type:
Grant
Filed:
October 18, 1988
Date of Patent:
November 27, 1990
Assignee:
Microscience International Corporation
Inventors:
Jeffrey Liu, Kai C. K. Sun, Shand-Ling Mao
Abstract: An improved voice coil actuator for a head arm assembly. The portions of the voice coil which do not pass between the permanent magnets, and thus form a return path for the current, are bent substantially perpendicular to the remainder of the coil. One of these perpendicular portions is fixed to the head arm assembly by bonding or otherwise. The perpendicular arrangement of the return portion of the coil does not effect the coil's performance because this portion does not pass between the permanent magnets and thus is not involved in generating the force which moves the head arm assembly. Such an arrangement causes the voice coil to take up less room, allowing it to be placed closer the edge of the disk drive housing.
Abstract: A mechanism for applying a side-loading force to a ball bearing ring of a hard disc drive pivoting head arm assembly. The head arm assembly has a central shaft with first and second ball bearing rings surrounding the shaft, one ring being above the other. One or more springs bias the upper and lower rings away from each other to apply a vertical loading force. A side loading force is applied to one of the ball bearing rings to further stabilize the head arm assembly. The addition of the side loading force of the present invention gives loading forces in two directions on the ball bearings of the head arm assembly, thus greatly increasing the stability. Not only vertical vibrations are prevented, but also side-to-side or tilting vibrations are prevented as well. The side loading is preferably done with a spring mounted in a recess in the cylinder surrounding the ball bearing rings.