Abstract: Compositions and methods are disclosed for improving the effectiveness of a chemotherapeutic regimen to eradicate multidrug-resistant transformed cells from the body of a mammal, preferably from the body of a human. The present disclosure capitalizes on the discovery of a novel multidrug-resistance associated protein (MRP), herein designated MRP-.beta.. The disclosed compositions include MRP-.beta. nucleic acids, including probes and antisense oligonucleotides, MRP-.beta. polypeptides and antibodies, MRP-.beta. expressing host cells, and non-human mammals transgenic or nullizygous for MRP-.beta.. The disclosed methods include methods for attenuating aberrant MRP-.beta. gene expression, protein production and/or protein function. In addition, methods are disclosed for identifying and using a modulator, such as an inhibitor, of MRP-.beta.. Preferably, the modulator is a small molecule.
Abstract: The present invention is directed to a device and methods for immobilizing a localized region of a compliant body. A device of the invention includes at least two arms, an elbow region between the arms, and a suction arrangement. During use the region of the compliant material to be immobilized is flanked by the arms and a negative pressure is applied through the suction arrangement to immobilize the flanked region. The device of the invention is suited for use in medical applications, for example, coronary bypass graft surgery.
Type:
Grant
Filed:
February 16, 1999
Date of Patent:
December 12, 2000
Assignee:
Millennium Cardiac Strategies, Inc.
Inventors:
George Andrew York Hamilton, William G. Lindsay
Abstract: Acid catalyzed cyclization of Diels-Alder adducts of myrcene is performed in the presence of hydroxyl-containing compounds, giving the resulting mixtures of isomeric acyloctahydronaphthalenes enhanced quantities of isomers that are particularly useful in perfumery because of their woody-amber odors with enhanced amber note.
Type:
Grant
Filed:
August 19, 1998
Date of Patent:
December 12, 2000
Assignee:
Millennium Specialty Chemicals
Inventors:
Mark B. Erman, Carlos G. Cardenas, Henri M. Hoffmann
Abstract: The present invention relates to methods and compositions for the treatment and diagnosis of cardiovascular disease, including, but not limited to, atherosclerosis, ischemia/reperfusion, hypertension, restenosis, and arterial inflammation. Specifically, the present invention identifies and describes genes which are differentially expressed in cardiovascular disease states, relative to their expression in normal, or non-cardiovascular disease states, and/or in response to manipulations relevant to cardiovascular disease. Further, the present invention identifies and describes genes via the ability of their gene products to interact with gene products involved in cardiovascular disease. Still further, the present invention provides methods for the identification and therapeutic use of compounds as treatments of cardiovascular disease.
Abstract: The present invention relates to methods and compositions for the treatment and diagnosis of immune disorders, especially T helper lymphocyte-related disorders. For example, genes which are differentially expressed within and among T helper (TH) cells and TH cell subpopulations, which include, but are not limited to TH0, TH1 and TH2 cell subpopulations are identified. Genes are also identified via the ability of their gene products to interact with gene products involved in the differentiation, maintenance and effector function of such TH cells and TH cell subpopulations. The genes identified can be used diagnostically or as targets for therapeutic intervention. In this regard, the present invention provides methods for the identification and therapeutic use of compounds as treatments of immune disorders, especially TH cell subpopulation-related disorders.
Abstract: Assays for the detection of .beta.-lactamase induction can be used to identify compounds that kill bacteria (i.e., bacteriocidal activity) or inhibit bacterial growth (i.e., bacteriostatic activity). The .beta.-lactamase can be encoded, for example, by a .beta.-lactamase gene carried by a bacterial host. The identified compounds can be use to treat bacterial infections in organisms such as mammals. The new methods can be used, for example, for high throughput screening of libraries of potential inhibitors.
Abstract: The present invention provides a novel protein kinase, CSAPK-1, as well as CSAPK-1 fusion proteins, antigenic peptides and anti-CSAPK-1 antibodies.
Abstract: The invention provides isolated nucleic acid molecules, designated CSAPK-2 nucleic acid molecules, which encode novel cardiovascular system associated protein kinases. The invention also provides antisense nucleic acid molecules, recombinant expression vectors containing CSAPK-2 nucleic acid molecules, host cells into which the expression vectors have been introduced, and methods for producing CSAPK-2 polypeptides.
Abstract: The present invention relates, first, to the identification of novel nucleic acid molecules, termed RATH genes and RATH gene products encoded by such nucleic acid molecules, or degenerate variants thereof, that participate in the regulation, control and/or modulation of G-protein-mediated signal transduction involved in T cell activation, including, but not limited to T helper (TH) cell and TH cell subpopulation activation. Specifically, the nucleic acid molecules of the present invention include the genes corresponding to the mammalian RATH genes, including the RATH1.1 genes. Sequence analysis indicates that the RATH genes are novel genes belonging to the RGS ("regulator of G-protein signalling") gene family, a gene family which encodes gene products involved in G-protein-mediated signal transduction.
Type:
Grant
Filed:
October 10, 1997
Date of Patent:
November 14, 2000
Assignee:
Millennium Pharmaceuticals, Inc.
Inventors:
Douglas Adam Levinson, Carlos J. Gimeno
Abstract: The present invention relates to a newly identified human cyclic nucleotide phosphodiesterase belonging to the superfamily of mammalian phosphodiesterases. The invention also relates to polynucleotides encoding the phosphodiesterase. The invention further relates to methods using the phosphodiesterase polypeptides and polynucleotides as a target for diagnosis and treatment in phosphodiesterase-mediated or -related disorders. The invention further relates to drug-screening methods using the phosphodiesterase polypeptides and polynucleotides to identify agonists and antagonists for diagnosis and treatment. The invention further encompasses agonists and antagonists based on the phosphodiesterase polypeptides and polynucleotides. The invention further relates to procedures for producing the phosphodiesterase polypeptides and polynucleotides.
Type:
Grant
Filed:
June 11, 1999
Date of Patent:
November 14, 2000
Assignee:
Millennium Pharmaceuticals, Inc.
Inventors:
Keith E. Robision, Rosana Kapeller-Libermann, David White
Abstract: Novel HKID-1 polypeptides, proteins, and nucleic acid molecules are disclosed. In addition to isolated, full-length HKID-1 proteins, the invention further provides isolated HKID-1 fusion proteins, antigenic peptides and anti-HKID-1 antibodies. The invention also provides HKID-1 nucleic acid molecules, recombinant expression vectors containing a nucleic acid molecule of the invention, host cells into which the expression vectors have been introduced and non-human transgenic animals in which an HKID-1 gene has been introduced or disrupted. Diagnostic, screening and therapeutic methods utilizing compositions of the invention are also provided.
Abstract: Novel MSP-18 polypeptides, proteins, and nucleic acid molecules are disclosed. In addition to isolated, full-length MSP-18 proteins, the invention further provides isolated MSP-18 fusion proteins, antigenic peptides and anti-MSP-18 antibodies. The invention also provides MSP-18 nucleic acid molecules, recombinant expression vectors containing a nucleic acid molecule of the invention, host cells into which the expression vectors have been introduced and non-human transgenic animals in which a MSP-18 gene has been introduced or disrupted. Diagnostic, screening and therapeutic methods utilizing compositions of the invention are also provided.
Abstract: The invention concerns the human gene encoding GLUTX, a glucose transporter. GLUTX nucleic acid and polypeptides, as well as molecules which increase or decrease expression or activity of GLUTX, are useful in the diagnosis and treatment of disorders associated with aberrant hexose transport.
Abstract: The present invention is directed to an improved synthesis of clasto-lactacystin-.beta.-lactone, and analogs thereof, that proceeds in fewer steps and in much greater overall yield than syntheses described in the prior art. The synthetic pathway relies upon a novel stereospecific synthesis of an oxazoline intermediate and a unique stereoselective addition of a formyl amide to the oxazoline. Also described are novel clasto-lactacystin-.beta.-lactones, and analogs thereof and their use as proteosome inhibitors.
Type:
Grant
Filed:
August 14, 1998
Date of Patent:
October 17, 2000
Assignee:
Millennium Pharmaceuticals, Inc.
Inventors:
Fran.cedilla.ois Soucy, Louis Plamondon, Mark Behnke, William Roush
Abstract: The present invention relates to the identification and characterization of a novel gene called don-1 related to epidermal growth factors (EGF) such as the neuregulins, and methods of preparing and using alternate splice forms of this gene to express new Don-1 polypeptides.
Abstract: The present invention is based at least in part on the discovery of the genomic structure of the human SR-BI gene and on the identification of polymorphic regions within the gene. Accordingly, the invention provides nucleic acids having a nucleotide sequence of an allelic variant of an SR-BI gene and nucleic acids having an SR-BI intronic sequence. The invention also provides methods for identifying specific alleles of polymorphic regions of an SR-BI gene, methods for determining whether a subject has or is at risk of developing a disease which is associated with a specific allele of a polymorphic region of an SR-BI gene, and kits for performing such methods.