Abstract: A protective sleeve is provided for the care of fingers, toes or other parts of the body. The sleeve is made of a piece of fabric, preferably including thermoplastic fibers. The piece of fabric includes opposite edges which are assembled to form the body of the sleeve. At least one lining layer, preferably of viscoelastic gel, is fixed onto a face of the piece of fabric, such that the layer at least partially covers the assembled edges of the piece of fabric.
Abstract: A method for manufacturing a protective layer for protecting skin and tissues in a vicinity of the skin includes the steps of: forming a mixture comprising approximately 15% of dimethyl-vinyl-terminated polydimethylsiloxane with a viscosity greater than 20,000 mPa·s, approximately 25% of dimethyl-vinyl-terminated polydimethylsiloxane with a viscosity between 200 and 20,000 mPa·s, approximately 45% of trimethyl-terminated polydimethylsiloxane, approximately 12% of trimethylsiloxy-treated pyrogenic silica, and approximately 3% of dimethyl-hydrogen-terminated co-polydimethylsiloxane-polymethyl-hydrogen-siloxane; polymerizing at least partially the mixture to obtain a polymer gel; and forming the protective layer using the polymer gel. The polymer gel has, at a temperature of 35° C.
Abstract: A device for protecting an area of skin of a human body includes a plate. The plate includes a first face covered by an external layer and a second face opposite the external layer. The second face is configured to be applied onto an area of skin to be protected. The plate also includes a protective part made of a polymer gel and at least one adhesive part made of a polymer gel. The protective part is configured to ensure mechanical protection of the area to be protected and the adhesive part is configured to come into contact with the skin. The adhesive part has an adhesive power greater than an adhesive power of the protective layer to hold the plate on the area to be protected.
Abstract: A method for manufacturing a protection device includes the steps of forming a plurality of cells in a support strip, filling the cells with a non-cross-linked compound, cross-linking the compound to form at least one module made of viscoelastic gel in the plurality of cells, depositing an adhesive substance on each module, and depositing a strip of fabric on the support strip to obtain a final compound strip. The at least one module made of viscoelastic gel is glued onto the strip of fabric by the adhesive substance.
Abstract: An orthopedic retractor is provided made of polymer gel shaped to be inserted into an interdigital space, having two complementary parts made of polymer gel, each part having a flat face shaped to be assembled to the flat face of the other part, such that together the two parts form the retractor, the flat faces once assembled forming a junction resistant to shearing forces while remaining separable from each other. Advantages: simplification of manufacturing and packaging methods.