Patents Assigned to MINFOUND MEDICAL SYSTEM CO., LTD.
  • Patent number: 11944476
    Abstract: A fixture for fabricating a detector mini-module includes a lower block having a Y-datum lower block upper surface, an X-datum lower block surface, and a Z-datum lower block surface orthogonal to both the Y-datum lower and X-datum block surface surfaces. A mount block for a detector is positionable and in contact with the X-datum lower block surface, the Y-datum lower block upper surface, and the Z-datum lower block surface. An intermediate block is positionable on the lower block having an aperture passing through an upper surface and having an X-datum intermediate block surface and a Z-datum intermediate block surface. When a mount block for the detector mini-module is positioned on the lower block, the mount block is biased having an X-axis mount block planar surface aligned with the X-datum lower block surface, and biased having a Z-axis mount block planar surface aligned with the Z-datum lower block surface.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: April 2, 2024
    Assignee: MINFOUND MEDICAL SYSTEMS CO., LTD.
    Inventors: Mark McElroy, Zhiyuan Zha
  • Patent number: 11823384
    Abstract: Disclosed is a CT image generation method for attenuation correction of PET images. According to the method, a CT image and a PET image at T1 and a PET image at T2 are acquired and input into a trained deep learning network to obtain a CT image at T2; the CT image can be applied to the attenuation correction of the PET image, thereby obtaining more an accurate PET AC (Attenuation Correction) image. According to the CT image generation method for attenuation correction of PET images, the dosage of X-rays received by a patient in the whole image acquisition stage can be reduced, and physiological and psychological pressure of the patient is relieved. In addition, the later image acquisition only needs a PET imaging device, without the need of PET/CT device, cost of imaging resource distribution can be reduced, and the imaging expense of the whole stage is reduced.
    Type: Grant
    Filed: January 23, 2021
    Date of Patent: November 21, 2023
    Assignees: ZHEJIANG LAB, MINFOUND MEDICAL SYSTEMS CO., LTD
    Inventors: Fan Rao, Wentao Zhu, Bao Yang, Ling Chen, Hongwei Ye
  • Patent number: 11786195
    Abstract: A detector assembly for a CT system includes a first support structure having a first plurality of mini-module support surfaces, each of the first plurality of mini-module support surfaces being tangent to a hypothetical sphere that is formed having a center of the hypothetical sphere positioned at a focal spot of the CT system, the first plurality of mini-module support surfaces at a first distance from the center of the hypothetical sphere, and a second support structure positioned next to the first support structure and having a second plurality of mini-module surfaces, the second support structure being angled in an X-Y plane with respect to the first support structure such that the second plurality of mini-module surfaces are tangent to the hypothetical sphere and at the first distance from the center of the hypothetical sphere.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: October 17, 2023
    Assignee: Minfound Medical Systems Co. Ltd.
    Inventor: Abdelaziz Ikhlef
  • Patent number: 11715562
    Abstract: Disclosed is a method for multi-center effect compensation based on a PET/CT intelligent diagnosis system. The method includes the following steps: estimating multi-center effect parameters of a test center B relative to a training center A by implementing a nonparametric mathematical method for data of the training center A and the test center B based on a location-scale model about additive and multiplicative multi-center effect parameters, and using the parameters to compensate the data of the test center B to eliminate a multi-center effect between the test center B and the training center A. According to the present disclosure, the multi-center effect between the training center A and the test center B can be compensated, so that the compensated data of the test center B can be used in the model trained by the training center A, and the generalization ability of the model is indirectly improved.
    Type: Grant
    Filed: January 23, 2021
    Date of Patent: August 1, 2023
    Assignees: ZHEJIANG LAB, MINFOUND MEDICAL SYSTEMS CO., LTD
    Inventors: Ling Chen, Wentao Zhu, Bao Yang, Fan Rao, Hongwei Ye, Yaofa Wang
  • Patent number: 11602317
    Abstract: A detector sub-assembly for a CT system includes a detector module that includes a mount block having a top planar surface, a Y-axis planar surface that is parallel with the top planar surface, an X-axis planar surface that is orthogonal to the first Y-axis planar surface, and an aperture passing through the X-axis planar surface. The module includes a substrate having a pixelated photodiode positioned thereon, and a two-dimensional anti-scatter grid (ASG) positioned on the pixelated photodiode. The detector sub-assembly includes a support structure including a Y-axis mount surface and an X-axis mount surface, and a second aperture passing through the X-axis mount surface, a mounting screw having an outer diameter that is smaller than an inner diameter of the aperture and passing through the aperture and into the second aperture when the Y-axis planar surface is on the Y-axis mount surface.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: March 14, 2023
    Assignee: Minfound Medical Systems Co., Ltd.
    Inventors: Abdelaziz Ikhlef, Mark McElroy
  • Patent number: 11504085
    Abstract: A method for calibrating defective channels of a CT device involves in a step S10, acquiring original data collected by the CT device; in a step S20, capturing to-be-recovered areas from the original data, wherein the to-be-recovered areas contain the defective channels of the CT device; in a step S30, inputting data of the to-be-recovered areas to a neural network for training so as to generate training results; and in a step S40, using the training results to repair the to-be-recovered areas. The method eliminates effects of artifacts caused by defective channels on image reconstruction.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: November 22, 2022
    Assignee: MINFOUND MEDICAL SYSTEM CO., LTD.
    Inventors: Aziz Ikhlef, Zheng Chu, Yaofa Wang
  • Patent number: 10786212
    Abstract: A computed tomography (CT) system includes a rotatable gantry having an opening to receive an object to be scanned, an x-ray tube, a pixelated detector positioned on the rotatable gantry to receive the x-rays from the x-ray tube, and a computer programmed to acquire helical CT data, determine a sunrise (SR) view position for each pixel within a SR index image, and determine a sunset (SS) view position for each pixel within a SS index image, for a given reference image slice, wherein the SR view position is a first angle of an illumination range for a voxel and the SS view position is a last angle of the illumination range for the voxel, for all slices, rotate the SR index image and the SS index image through a projection index, and reconstruct an image based on the rotated SR index image and the SS index image.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: September 29, 2020
    Assignee: Minfound Medical Systems Co., Ltd.
    Inventors: Hongbin Guo, Qing Ye