Patents Assigned to MiniMed Inc.
  • Publication number: 20210100996
    Abstract: This disclosure includes an apparatus for detecting mating of a cap with a fluid delivery device having a housing, a receptacle, and a sensor. The housing is configured to carry an insulin delivery device having a reservoir of the fluid. The receptacle is provided by the housing having a coupling with a locking recess configured to receive a cap with a sprung locking arm. The pressure sensor is carried by the receptacle proximate the coupling and configured to detect engagement force of the sprung locking arm with the receptacle when mated with the housing. A method is also provided.
    Type: Application
    Filed: October 8, 2019
    Publication date: April 8, 2021
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Amith Wijesuriya, Thomas P. Miller
  • Patent number: 10953151
    Abstract: Embodiments of the invention described herein include low cost infusion devices having basal and/or bolus fluid delivery options. Embodiments of the device include a housing, a reservoir to contain the fluid, a source of pressure to exert a force to expel the fluid contained in the reservoir, a bolus port adapted to receive an optional extra dose of fluid, and a cannula in fluid communication with the reservoir and the bolus port. The cannula is adapted for insertion into the user's skin for delivery of the fluid to the user's body. The device can provide a continuous delivery of the fluid along a first fluid flow path from the reservoir to the cannula and the optional extra dose of fluid along a second fluid flow path from the bolus port to the cannula.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: March 23, 2021
    Assignee: Medtronic MiniMed, Inc.
    Inventor: Mark Lin
  • Publication number: 20210076993
    Abstract: Embodiments of the invention provide compositions useful in implantable devices such as analyte sensors as well as methods for making and using such compositions and devices. In typical embodiments of the invention, the device is a glucose sensor comprising a polymeric composition that includes amounts of one or more immunosuppressant agents so as to provide such membranes with improved material properties such as enhanced biocompatibility.
    Type: Application
    Filed: September 18, 2020
    Publication date: March 18, 2021
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Inthirai Somasuntharam, Jake Matteson, Matthew Jolly, Quyen Ong, Akhil Srinivasan, Poonam Gulati, Andrea Varsavsky, Sana Suhail
  • Patent number: 10939488
    Abstract: A method and system are provided for controlling which communication interface of a plurality of communication interfaces is used for communication between a plurality of devices that can be part of a wireless body area network for a medical device system. The communication interfaces can include a body area network communication interface and a far field communication interface. A controller can determine whether a first device is able to establish a communication link with a second device that is located in a coverage region of the wireless body area network using a first body area network communication interface. If so, the controller can determine whether a quality of service over the communication link is greater than or equal to a first threshold, and if so, the first body area network communication interface can be used to communicate data from the first device to the second device via magnetic signals.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: March 2, 2021
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Anthony C. Ng, Yazid E. Ould Sidi
  • Patent number: 10867012
    Abstract: A computer-implemented system and related method of managing use of a diabetes management device are presented here. An embodiment of the method obtains input data for a user of the diabetes management device, and compares the input data against historical event/outcome combinations maintained for the user. Each of the event/outcome combinations includes insight event data indicative of a glycemic event and a glycemic outcome corresponding to the insight event data. The method determines, based on the comparing, a correlation between the input data and a glycemic outcome. The method continues by generating a glycemic insight message for delivery to the user, wherein the glycemic insight message includes information regarding a relationship between at least some of the input data and the glycemic outcome.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: December 15, 2020
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Pratik Agrawal, Chantal M. McMahon, Yuxiang Zhong, Boyi Jiang, Michael P. Stone, Huzefa F. Neemuchwala, Kelly F. Joy
  • Patent number: 10864286
    Abstract: The invention is directed to a competitive glucose binding affinity assay comprising a glucose receptor (typically mannan binding lectin) labeled with an assay fluorophore and a modified glucose analog (typically dextran) labeled with a reference fluorophore. In certain embodiments, the glucose analog is dextran and is coupled to both a reference fluorophore and a quencher dye (e.g. hexamethoxy crystalviolet-1). Optionally the reference fluorophore is blue shifted relative to the assay fluorophore.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: December 15, 2020
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Tri T. Dang, Soren Aasmul, Jesper Svenning Kristensen, Joseph Hanna, Robert McKinlay
  • Patent number: 10861591
    Abstract: Infusion systems, infusion devices, and related operating methods are provided. An exemplary method of operating an infusion device capable of delivering fluid to a patient involves obtaining, by a control system associated with the infusion device, measurement values indicative of a condition of the patient provided by a sensing device, identifying an event pattern based at least in part on the measurement values for the condition and historical data associated with the patient, generating a notification indicative of the event pattern in response to identifying the event pattern, and adjusting operation of the infusion device to deliver the fluid to the patient in a manner that is influenced by the event pattern in response to receiving user input confirming the event pattern.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: December 8, 2020
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Benyamin Grosman, David Legray, Ulrich H. Rankers, Anirban Roy, Steven J. Vargas, Mahta Sadeghzadeh
  • Patent number: 10861603
    Abstract: Medical devices and related augmented reality systems and methods are provided. A method of operating an infusion device involves analyzing one or more images captured by an imaging device to identify image content indicative of an activity capable of influencing the physiological condition of the patient and in response to identifying the activity based at least in part on the one or more images, automatically adjusting delivery of the fluid to the patient based at least in part on the activity. An expected nutritional characteristic for a meal is determined based at least in part on the image content, and a delivery adjustment for delivering the fluid is determined based on the expected nutritional characteristic. A graphical indication of the delivery adjustment may also be provided using augmented reality.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: December 8, 2020
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Chia-Hung Chiu, Rebecca K. Gottlieb, Carol A. Jerome, Kenny J. Long
  • Patent number: 10854324
    Abstract: Infusion systems, infusion devices, and related operating methods are provided. An exemplary method of operating an infusion device capable of delivering fluid to a patient involves predicting, by a control system associated with the infusion device, a future occurrence of an event based at least in part on historical data associated with the patient, and prior to the future occurrence of the event, automatically adjusting a control parameter for operating the infusion device based at least in part on the event and automatically operating an actuation arrangement of the infusion device to deliver the fluid to the patient based at least in part on a current measurement of the physiological condition and the adjusted control parameter.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: December 1, 2020
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Anirban Roy, Benyamin Grosman, Patrick E. Weydt, Neha J. Parikh, Louis J. Lintereur, Di Wu
  • Patent number: 10854322
    Abstract: Infusion systems, infusion devices, and related operating methods are provided. An exemplary method of operating an infusion device capable of delivering fluid to a patient involves obtaining, by a control system associated with the infusion device, user input indicating an activity by the patient, obtaining historical data for the patient corresponding to the activity, determining a probable patient response corresponding to the activity based at least in part on the historical data for the patient, determining an adjustment for delivering the fluid by the infusion device based at least in part on the probable patient response, and operating the infusion device to deliver the fluid to the patient in accordance with the adjustment.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: December 1, 2020
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Mahta Sadeghzadeh, Benyamin Grosman, David Legray, Ulrich H. Rankers, Anirban Roy, Steven J. Vargas
  • Patent number: 10854323
    Abstract: Infusion systems, infusion devices, and related operating methods are provided. An exemplary method of operating an infusion device capable of delivering fluid to a patient involves obtaining, by a control system associated with the infusion device, an input meal indication, obtaining historical data for the patient associated with the input meal indication, determining an estimated carbohydrate amount corresponding to the input meal indication based at least in part on the historical data, determining a bolus dosage of the insulin based at least in part on the estimated carbohydrate amount, and operating an actuation arrangement of the infusion device to deliver the bolus dosage of the insulin to the patient.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: December 1, 2020
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Benyamin Grosman, Anirban Roy, Patrick E. Weydt, Neha J. Parikh, Louis J. Lintereur, Di Wu
  • Patent number: 10850033
    Abstract: Presented here are techniques for controlling glucose levels of a patient based on predicted time to a target glucose level. One methodology predicts a trajectory of the blood glucose level based on past observations of the blood glucose level, determines a cost expression based on the trajectory, and affects a future command to an infusion pump to affect a cost value according to the cost expression. Another methodology defines a target blood glucose concentration level for the patient, observes a current blood glucose concentration for the patient based on signals received from a blood-glucose sensor, and predicts a duration of time for the patient's blood glucose concentration to reach the target blood glucose concentration level based on the observed current blood glucose concentration.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: December 1, 2020
    Assignee: Medtronic MiniMed, Inc.
    Inventor: Paul H. Kovelman
  • Patent number: 10845330
    Abstract: A physiological characteristic sensor, a method for forming a physiological characteristic sensor, and a method for forming a platinum deposit having a rough surface are presented here. The method for forming a physiological characteristic sensor includes immersing a sensor electrode in a platinum electrolytic bath. Further, the method includes performing an electrodeposition process by sequentially applying a pulsed signal to the sensor electrode, wherein the pulsed signal includes a repeated cycle of a first current and a second current different from the first current, and applying a non-pulsed continuous signal to the sensor electrode, wherein the non-pulsed continuous signal includes a non-repeated application of a third current, to form a platinum deposit on the sensor electrode.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: November 24, 2020
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Steven C. Jacks, Raghavendhar Gautham, Bradley C. Liang, Megan E. Little, Daniel E. Pesantez, Rajiv Shah
  • Patent number: 10842936
    Abstract: Infusion systems, infusion devices, and related operating methods are provided. An exemplary method of operating an infusion device involves obtaining one or more measurement values of a physiological condition in the body of a user during an initial monitoring period and determining a fasting reference value for a metric based on the one or more measurement values. After the initial monitoring period, the method continues by obtaining an updated measurement value during a fasting period, determining a current value for the metric based at least in part on the updated measurement value, and generating a notification in response to a deviation between the current value and the fasting reference value exceeding a threshold indicative of insertion site loss or other loss of effectiveness.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: November 24, 2020
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Mikhail Loutseiko, Anirban Roy, Benyamin Grosman, Di Wu, Rebecca K. Gottlieb, Neha J. Parikh
  • Patent number: 10827960
    Abstract: A sensor set is provided for sensing of a body characteristic, such as glucose. The sensor set includes a mounting base for the sensor including a shim adapted to prevent pull up of the sensor and a connector to connect to the mounting base and has an improved structure for connecting the mounting base to the connector. The connector may contain sensor electronics for wired or wireless communication to an external monitor or display. The mounting base includes latch arms and the connector adapted to fit and lock into latch recesses on the connector and includes anti-rotation arms adapted to fit into anti-rotation arm recesses on the connector.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: November 10, 2020
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Eric Allan Larson, Ashley N. Sullivan, Chase A. Thompson, David C. Antonio, Jose J. Ruelas, Megan E. Little, Joseph P. Brinson
  • Patent number: 10828419
    Abstract: An infusion set for use with a fluid infusion device having a fluid reservoir includes a cannula that provides a fluid flow path and a first housing. The first housing includes an articulation member coupled to the cannula. The articulation member is pivotable relative to the first housing to move the cannula relative to the first housing. The first housing is coupled to a fluid supply line to provide a fluid to the cannula, and the fluid supply line is to be coupled to the fluid reservoir to receive the fluid. The infusion set includes a second housing uncoupled from the first housing that surrounds the first housing and receives a portion of the fluid supply line.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: November 10, 2020
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Matthew William Yavorsky, R. Marie Tieck, Dhivya Sridhar, Guangping Zhang
  • Patent number: 10821222
    Abstract: A method and apparatus for a connection interface between a reservoir or syringe, infusion set tubing, and an infusion pump is provided. The reservoir, a base and a cap are connected to form an integrated unit that is capable of being inserted and secured in an infusion pump housing. The cap and the infusion pump are each provided with at least one sensor or at least one detectable feature, arranged to interact with at least one corresponding detectable feature or sensor on the other of the cap and infusion pump device, to detect one or more of the presence, position or other characteristic of the cap when the cap is aligned or coupled with the infusion pump housing. The detectable feature and sensor may be magnetic, RF, mechanical, optical or any combination.
    Type: Grant
    Filed: July 16, 2015
    Date of Patent: November 3, 2020
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Jacob E. Pananen, Afshin Bazargan, Juan M. Alderete, Jr., Sherif M. Ali, Benjamin A. Grover, Edgardo C. Halili, Susan McConnell Montalvo, Anthony C. Ng, Ulrich H. Rankers, Vaughn S. Sakae, Pablo Vazquez, Andrew E. Weaver, Matthew William Yavorsky, Edmond W. Yu, Jennifer L. Wagner, Mark Lin, Arsen Ibranyan, R. Marie Tieck, Adam S. Trock, Eric M. Lorenzen
  • Patent number: 10813592
    Abstract: A physiological sensor history backfill system and method including a method of sensor history backfill for a local base device operable to wirelessly communicate with a physiological sensor connected to a patient, the method including: obtaining physiological readings for the patient at a predetermined interval; storing the physiological readings at the physiological sensor as sensor physiological readings; storing the physiological readings at the local base device as historic physiological readings; obtaining a current physiological reading for the patient; transmitting the current physiological reading to the local base device in a current reading message; detecting a record gap in the historic physiological readings between the current physiological reading and the historic physiological readings; and filling the record gap in the historic physiological readings with sensor physiological readings from the physiological sensor when the current reading message does not include the sensor physiological read
    Type: Grant
    Filed: February 3, 2018
    Date of Patent: October 27, 2020
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Linda Massey, Thomas Collins, David Lewinski, Linda Torres, Yongbo Wang
  • Patent number: 10792378
    Abstract: The invention is directed to a competitive glucose binding affinity assay comprising a glucose receptor (typically mannan binding lectin) labeled with an assay fluorophore and a modified glucose analog (typically dextran) labeled with a reference fluorophore. In certain embodiments, the glucose analog is dextran and is coupled to both a reference fluorophore and a quencher dye (e.g. hexamethoxy crystalviolet-1). Optionally the reference fluorophore is blue shifted relative to the assay fluorophore.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: October 6, 2020
    Assignee: Medtronics MiniMed, Inc.
    Inventors: Soren Aasmul, Jesper Svenning Kristensen
  • Patent number: 10790054
    Abstract: A sensing device monitors and tracks food intake events and details. A processor, appropriately programmed, controls aspects of the sensing device to capture data, store data, analyze data and provide suitable feedback related to food intake. More generally, the methods might include detecting, identifying, analyzing, quantifying, tracking, processing and/or influencing, related to the intake of food, eating habits, eating patterns, and/or triggers for food intake events, eating habits, or eating patterns. Feedback might be targeted for influencing the intake of food, eating habits, or eating patterns, and/or triggers for those. The sensing device can also be used to track and provide feedback beyond food-related behaviors and more generally track behavior events, detect behavior event triggers and behavior event patterns and provide suitable feedback.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: September 29, 2020
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Katelijn Vleugels, Ronald Marianetti, II