Patents Assigned to MiniMed Inc.
  • Patent number: 12178994
    Abstract: An insertion set system includes a base configured to be secured to a patient, and a flexible tubing on the base. The flexible tubing has a distal end portion forming a cannula to be inserted into the patient. An inserter having a needle is received by the base. The needle has a channel in which the distal end portion of the flexible tubing is received. The needle is able to slide relative to the flexible tubing, to selectively withdraw the needle off of the distal end portion of the flexible tubing. The base may include a passage for fluid flow arranged transverse to the axial dimension of the distal end portion of the flexible tubing.
    Type: Grant
    Filed: April 13, 2023
    Date of Patent: December 31, 2024
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Chia-Hung Chiu, Hsifu Wang, Rebecca K. Gottlieb
  • Patent number: 12161836
    Abstract: A flexible tubing for a cannula has a hollow tubing body having a length dimension from a first end to a second end, and an outer diameter of no more than 0.9 mm. The tubing body has a section of enhanced flexibility of a greater flexibility than one or more other sections of the tubing body. The section of enhanced flexibility is spaced from the first end of the tubing body by a distance D, where D is within a range of 3.0 mm to 5.0 mm for a flexible tubing having a length of about 9.0 mm, and where D is within a range of 1.0 mm to 2.9 mm for a flexible tubing having a length of about 6.0 mm.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: December 10, 2024
    Assignee: Medtronic MiniMed, Inc.
    Inventors: An Thien Pham, Matthew William Yavorsky, Amith Wijesuriya, Yevgeniy Levin
  • Patent number: 12161464
    Abstract: Methods, systems, and devices for improving continuous glucose monitoring (“CGM”) are described herein. More particularly, the methods, systems, and devices describe applying micro machine learning models to generate predicted sensor glucose values. The system may use the predicted sensor glucose values to display a sensor glucose value to a user. The layered models may generate more reliable sensor glucose predictions across many scenarios, leading to a reduction of sensor glucose signal blanking. The methods, systems, and devices described herein further comprise applying a plurality of micro model to estimate sensor glucose values under outlier conditions. The system may prioritize the models that are trained for certain outlier conditions when the system detects those outlier condition based on the sensor data.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: December 10, 2024
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Peter Ajemba, Keith Nogueira
  • Patent number: 12156987
    Abstract: A pump for delivering a fluid includes a pump housing that defines at least one reservoir having a circumferentially open first end, a circumferentially closed second end and a chamber to receive the fluid. The pump includes a plunger assembly having at least one plunger arm and a cannula fluidly coupled to the plunger arm to dispense the fluid from the pump. The plunger arm is receivable within the first end of the reservoir, and the at least one plunger arm defining an internal conduit to receive the fluid from the at least one fluid reservoir. The internal conduit is fluidly coupled to the cannula. The plunger assembly is movable in a first direction relative to the pump housing to advance the plunger arm within the fluid reservoir to dispense the fluid from the fluid reservoir out of the pump via the cannula.
    Type: Grant
    Filed: May 2, 2022
    Date of Patent: December 3, 2024
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Eric Larson, Shixin Chen, Magnus Johansson, Louis J. Lintereur, Austin Reeder, Peter Schultz
  • Patent number: 12159697
    Abstract: Devices, systems, and techniques for automatic network configuration based on biometric authentication are described herein. In one example, one or more processors may obtain first biometric data derived from one or more sensor signals generated by one or more sensors of a first device coupled to a user. The one or more processors may obtain second biometric data derived from one or more sensor signals generated by one or more sensors of a second device. The one or more processors may compare the first biometric data and the second biometric data, determine that the second device is coupled to the user based on the comparison, and establish a communication link with the second device based on the determination that the second device is coupled to the user.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: December 3, 2024
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Afshin Bazargan, Patrick E. Weydt, Hans K. Wenstad, Adam S. Trock, Seung C. Shin, Samuel Finney
  • Patent number: 12156988
    Abstract: Infusion devices, systems, and related operating methods are provided. A method of detecting an anomalous condition with respect to a fluid path involves providing energy to an actuation arrangement to produce actuation, wherein the actuation arrangement is coupled to a plunger configured to deliver fluid via the fluid path, monitoring an orientation of the actuation arrangement using a sensing arrangement, and detecting an anomalous condition based on the orientation of the actuation arrangement.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: December 3, 2024
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Afshin Bazargan, Adam S. Trock
  • Patent number: 12138047
    Abstract: Methods, systems, and devices for improving continuous glucose monitoring (“CGM”) are described herein. More particularly, the methods, systems, and devices describe applying layered machine learning models to generate predicted sensor glucose values. The system may use the predicted sensor glucose values to display a sensor glucose value to a user. The layered models may generate more reliable sensor glucose predictions across many scenarios, leading to a reduction of sensor glucose signal blanking. The methods, systems, and devices described herein further comprise applying a plurality of micro model to estimate sensor glucose values under outlier conditions. The system may prioritize the models that are trained for certain outlier conditions when the system detects those outlier condition based on the sensor data.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: November 12, 2024
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Peter Ajemba, Keith Nogueira
  • Publication number: 20240358294
    Abstract: Embodiments of the invention provide optimized polymeric surfaces adapted for use with implantable medical devices as well as methods for making and using such polymeric surfaces. These polymer surfaces have a constellation of features that function to inhibit or avoid an inflammatory immune response generated by implantable medical devices. Typical embodiments of the invention include an implantable glucose sensor used in the management of diabetes having a polymer surface with the disclosed constellation of features.
    Type: Application
    Filed: July 3, 2024
    Publication date: October 31, 2024
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Jia Yao, Daniel E. Pesantez, Anuradha Biswas Bhatia, Akhil Srinivasan, Guangping Zhang, Andrea Varsavsky, Raghavendhar Gautham
  • Patent number: 12128219
    Abstract: Systems, devices, and techniques are disclosed for administering and tracking medicine to patients and providing health management capabilities for patients and caregivers. In some aspects, a system includes an injection pen device including a dose setting mechanism, a dispensing mechanism, and an electronics unit to generate dose data associated with a dispensing event of a dose of the medicine dispensed from the injection pen device and time data associated with the dispensing event; a mobile device in wireless communication to receive and process the dose data; and a software application configured to determine a recommended dose based on health data and contextual data associated with a user of the injection pen device, the software application including a learning dose calculator module to adaptively calculate the recommended dose of the medicine based on time-relevant and circumstances-relevant data specific to the user of the injection pen device.
    Type: Grant
    Filed: October 12, 2022
    Date of Patent: October 29, 2024
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Sean Saint, Mike Mensinger, Arnold Holmquist, Jack Pryor
  • Patent number: 12119100
    Abstract: Systems, devices, and techniques are disclosed for administering and tracking medicine to patients and providing health management capabilities for patients and caregivers. In some aspects, a system includes an injection pen device in communication with a mobile communication device having a software application to determine a recommended dose based on prior dose data, analyte data, and nutrient data and to generate a report illustrative of a relationship between the medicine data, the health data, and the contextual data.
    Type: Grant
    Filed: February 1, 2023
    Date of Patent: October 15, 2024
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Michael Mensinger, Sean Saint
  • Publication number: 20240335147
    Abstract: Embodiments of the invention provide amperometric analyte sensors having membranes made from materials selected to transport analytes such as glucose to an enzyme within the sensor while simultaneously inhibiting the movement of interfering species such as acetaminophen to the electrode within the sensor. While embodiments of the invention can be used in a variety of contexts, typical embodiments of the invention include glucose or ketone sensors used in the management of diabetes.
    Type: Application
    Filed: March 12, 2024
    Publication date: October 10, 2024
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Dmitri A. Kossakovski, Ashwin K. Rao, Suryakiran Vadrevu
  • Patent number: 12109391
    Abstract: A medical device includes a first housing portion (FHP) and a second housing portion (SHP) configured to be to be movable relative to each other from a first position to operatively engage at a second position to couple at least one of a drive device and a needle-inserting device supported by one of the FHP and the SHP to a reservoir supported by the other of the FHP and the SHP. Electronic circuitry configured to detect at least one of a first magnetic interaction between a magnet and at least one of a first magnetically attractive material and a first magnet-responsive device and a second magnetic interaction between the magnet and at least one of a second magnetically attractive material and a second magnet-responsive device, and to provide a signal or a change in state in response to detecting at least one of the interactions.
    Type: Grant
    Filed: October 14, 2022
    Date of Patent: October 8, 2024
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Ian B. Hanson, Paul F. Bente, IV
  • Patent number: 12110583
    Abstract: Analyte sensors and methods for fabricating analyte sensors in a roll-to-roll process are provided. In an exemplary embodiment, a method includes providing a roll of a polyester substrate having a first side coated with a layer of platinum, wherein the platinum is in direct contact with the polyester substrate; patterning the layer of platinum to form electrodes; punching the polyester substrate to form ribbons, wherein each ribbon is connected to a remaining polyester substrate web by a tab, and wherein each sensor includes an electrode; after punching the polyester substrate to form ribbons, depositing an enzyme layer over the portions of the working electrodes and coating the working electrodes with a glucose limiting membrane; after depositing the enzyme layer over the portions of the working electrodes and coating the working electrodes with a glucose limiting membrane, singulating the individual sensors by completely separating each individual sensor from the polyester substrate.
    Type: Grant
    Filed: November 14, 2022
    Date of Patent: October 8, 2024
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Santhisagar Vaddiraju, Dennis Slomski
  • Publication number: 20240298932
    Abstract: Described here are patches and methods for measuring glucose in sweat (and tears and the like). In general, the patches comprise an adhesive layer adapted to bond to skin of an individual, a substrate layer disposed over the adhesive layer and comprising a glucose sensing complex including a chromogen that changes color in the presence of certain concentrations of glucose, and a cover. In typical embodiments, the substrate layer has elements formed to direct and accumulate sweat that migrates from the skin of the individual to the glucose sensing complex. Methods of using the invention can comprise cleaning the skin surface, collecting sweat in a patch comprising this microfluidic constellation of elements, and observing concentrations of glucose collected in the sweat, for example either visually, or by using a smartphone or other computer processing device.
    Type: Application
    Filed: May 15, 2024
    Publication date: September 12, 2024
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Ashwin K. Rao, Rebecca K. Gottlieb, Quyen B. Ong
  • Publication number: 20240298941
    Abstract: Embodiments of the invention provide amperometric analyte sensors having optimized elements such as interference rejection membranes, and associated architectures, as well as methods for making and using such sensors. While embodiments of the innovation can be used in a variety of contexts, typical embodiments of the invention include glucose sensors used in the management of diabetes.
    Type: Application
    Filed: May 16, 2024
    Publication date: September 12, 2024
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Ashwin K. Rao, Qingling Yang, Ellis Garai, Daniel E. Pesantez
  • Patent number: 12082910
    Abstract: Systems and methods are described herein for utilizing a photoacoustic sensor for estimating analyte concentration levels. Also described here are training methods for training an analyte sensor to more accurately estimate an analyte concentration level on the basis of a received acoustic signal.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: September 10, 2024
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Li Zhou, Raymond M. Russell, Peter Schultz, Anuj M. Patel, Carol Chen, Roshanne Malekmadani, Lynette To, Hsiao-Yu S. Kow, Raghavendhar Gautham
  • Patent number: 12070576
    Abstract: Ambulatory infusion pumps, durable assemblies, and disposable assemblies, including energy sources, reservoirs, baseplates, and related components therefor, as well as component combinations and related methods.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: August 27, 2024
    Assignee: Medtronic Minimed, Inc.
    Inventor: Roger E. Smith
  • Patent number: 12048531
    Abstract: Techniques disclosed herein relate to glucose management recommendations based on nutritional information. In some embodiments, the techniques may involve obtaining user input that includes textual input indicating quantitative information for a food item. The techniques may also involve determining, based on the quantitative information for the food item, nutritional information for the food item, where the quantitative information for the food item is different from the nutritional information for the food item. The techniques may further involve generating, based on the nutritional information, a glucose management recommendation.
    Type: Grant
    Filed: April 24, 2023
    Date of Patent: July 30, 2024
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Yaron Hadad, Jonathan Lipnik
  • Publication number: 20240225544
    Abstract: A medical device includes a sensor to observe a characteristic of an anatomy, and a sensor base coupled to the sensor. The medical device includes a coupling system to couple the sensor base to the anatomy. The coupling system includes a first adhesive member and a second adhesive member. The first adhesive member is coupled to the sensor base and the second adhesive member is to couple to the anatomy. The first adhesive member includes at least one cut-out to direct moisture to an ambient environment surrounding the medical device.
    Type: Application
    Filed: March 20, 2024
    Publication date: July 11, 2024
    Applicant: Medtronic Minimed, Inc.
    Inventors: Jasson Rodriguez, Ellis Garai, Ravi R. Deverkadra, Sara M. Voisin, Jacob E. Pananen
  • Patent number: 12027249
    Abstract: Systems, devices and methods are disclosed for a prescription-regulated software application and an associated medical device. In some aspects, a smart medicine-injection device (e.g., smart insulin pen) is configured to be in communication with a patient's companion device (e.g., smartphone) having a software application (prescription app) that serves the patient as a complimentary medical device to the smart medicine-injection device, in which only certain features and functionalities of the prescription app are fully operable based on device pairing with the smart medicine-injection device to unlock medical device capabilities only available to the patient through prescription.
    Type: Grant
    Filed: May 23, 2023
    Date of Patent: July 2, 2024
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Sean Saint, Jasper Benke