Patents Assigned to MiniMed Inc.
  • Patent number: 7347819
    Abstract: An implanted medical device (e.g. infusion pump) and external device communicate with one another via telemetry wherein messages are transmitted under a robust communication protocol. The communication protocol gives enhanced assurance concerning the integrity of messages that impact medical operations of the implantable device. Messages are transmitted using a multipart format that includes a preamble, a frame sync, a telemetry ID, data, and a validation code. The data portion of the message includes an op-code that dictates various other elements that form part of the message. The data portion may also include additional elements such as sequence numbers, bolus numbers, and duplicate data elements. A telemetry ID for the transmitting device may be implicitly embedded in the message as part of the validation code that is sent with the message and that must be pre-known by the receiver to confirm the integrity of the received message.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: March 25, 2008
    Assignee: Medtronic Minimed, Inc.
    Inventors: Ronald J. Lebel, Varaz Shahmirian, Sam W. Bowman, IV, Timothy J. Starkweather, Philip T. Weiss, Robert C. Dennard, John T. Armstrong, John D. Richert
  • Patent number: 7344500
    Abstract: A system is provided for sensing blood glucose data of a patient. The system includes a sensor, user interface, and an optional auxiliary device. If the connection between the sensor and user interface is by a wire, the sensor remains powered when the wire is disconnected. The communication between the sensor and the user interface may be wireless. The auxiliary device can be a patient monitor or other display or signal device, which displays information about the blood glucose data collected by the sensor. The sensor is connected to sensor electronics, which include a sensor power supply, a voltage regulator, and optionally a memory and processor.
    Type: Grant
    Filed: July 27, 2004
    Date of Patent: March 18, 2008
    Assignee: Medtronic Minimed, Inc.
    Inventors: Cary D. Talbot, John J. Mastrototaro, Rajiv Shah, Edward Chernoff, John C. Mueller, Jr., Varaz Shahmirian, Richard E. Purvis, Wayne A. Morgan, Rebecca K. Gottlieb
  • Patent number: 7342508
    Abstract: A programmable telemetry circuit that may be programmed for high bandwidth, low Q; low bandwidth, high Q; or for other parameters. The programmable telemetry circuit may include a first coil; a high impedance path having a first node connected to a first node of the first coil; a low impedance path having a first node connected to the first node of the first coil; a capacitive path having a first node connected to a second node of the first coil; and an input path for coupling signals into the high impedance path, the low impedance path, and the capacitive path. The low impedance path may be connected in parallel with the high impedance path. The capacitive path may form a circuitous path with the high impedance path and the low impedance path. The programmable circuit may be programmed to select the high impedance path or the low impedance path.
    Type: Grant
    Filed: December 26, 2003
    Date of Patent: March 11, 2008
    Assignee: Medtronic Minimed, Inc.
    Inventors: Wayne Morgan, Phillip B. Hess
  • Publication number: 20080057779
    Abstract: Methods and apparatuses for electrically connecting a medical glucose monitor to a glucose sensor set, as well as for testing the operation of the glucose monitor, monitor cable and glucose sensor set are provided. In one embodiment, an electric cable comprises a cable member, a first connector and a second connector. The cable member in turn comprises at least one insulated conductor, a conductive shielding layer disposed around the at least one insulated conductor; and an insulating layer disposed around the conductive shielding layer. A glucose monitoring system test plug provides for a releasable electrical connection with the electric cable. In one embodiment, the test plug comprises a housing and a fitting affixed thereto which is adapted to electrically couple the test plug with the electric cable.
    Type: Application
    Filed: August 28, 2007
    Publication date: March 6, 2008
    Applicant: Medtronic MiniMed, Inc.
    Inventors: John Mastrototaro, Richard Purvis, Edgardo Halili, Eric Johnson
  • Patent number: 7329239
    Abstract: An insertion device and insertion set. The insertion device for inserting at least a portion of at least one piercing member of an insertion set through the skin of a patient includes a device housing, a carrier body and a driver. The carrier body is slidably received within the device housing for movement between an advanced position and a retracted position. The carrier body also includes a receiving structure to support the insertion set in a position with the at least one piercing member oriented for insertion through the skin of the patient at a predetermined angle relative to the skin of the patient upon movement of the carrier body from the retracted position to the advanced position.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: February 12, 2008
    Assignee: Medtronic Minimed, Inc.
    Inventors: Jason H. Safabash, Susan M. McConnell, Randy W. Adair, Jeffery V. Funderbunk, April A. Marano, Jeffrey F. Field
  • Patent number: 7323543
    Abstract: A pharmaceutical composition includes at least two of agents I)-iii), wherein agent i) is selected from the group consisting of an insulin, an insulin analog, a physiologically active fragment of said insulin and a physiologically active fragment of said insulin analog, agent ii) is selected from the group consisting of an insulin-related peptide, an insulin-related peptide analog, a physiologically active insulin-related peptide fragment and a physiologically active insulin-related peptide analog fragment, and agent iii) is an insulin sensitizer.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: January 29, 2008
    Assignee: MiniMed, Inc.
    Inventors: William P. Van Antwerp, Andreas H. R. Pfuetzner
  • Patent number: 7324012
    Abstract: A telemetered characteristic monitor system includes a remotely located data receiving device, a sensor for producing signal indicative of a characteristic of a user, and a transmitter device. The transmitter device includes a housing, a sensor connector, a processor, and a transmitter. The transmitter receives the signals from the sensor and wirelessly transmits the processed signals to the remotely located data receiving device. The processor coupled to the sensor processes the signals from the sensor for transmission to the remotely located data receiving device. The data receiving device may be a characteristic monitor, a data receiver that provides data to another device, an RF programmer for a medical device, a medication delivery device (such as an infusion pump), or the like.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: January 29, 2008
    Assignee: Medtronic Minimed, Inc.
    Inventors: Alfred E. Mann, Richard E. Purvis, John J. Mastrototaro, James D. Causey, James Henke, Peter Hong, John H. Livingston, Clifford W. Hague, Brad T. Hite
  • Patent number: 7323142
    Abstract: A substrate with hermetically sealed vias extending from one side of the substrate to another and a method for fabricating same. The vias may be filled with a conductive material such as, for example, a fritless ink. The conductive path formed by the conductive material aids in sealing one side of the substrate from another. One side of the substrate may include a sensing element and another side of the substrate may include sensing electronics.
    Type: Grant
    Filed: January 2, 2002
    Date of Patent: January 29, 2008
    Assignee: Medtronic Minimed, Inc.
    Inventors: Shaun Pendo, Rajiv Shah, Edward Chernoff
  • Patent number: 7318816
    Abstract: An insertion device and insertion set. The insertion device for inserting at least a portion of at least one piercing member of an insertion set through the skin of a patient includes a device housing, a carrier body and a driver. The carrier body is slidably received within the device housing for movement between an advanced position and a retracted position. The carrier body also includes a receiving structure to support the insertion set in a position with the at least one piercing member oriented for insertion through the skin of the patient at a predetermined or variable angle relative to the skin of the patient upon movement of the carrier body from the retracted position to the advanced position.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: January 15, 2008
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Randa M. Bobroff, Lawrence Kiliszewski, Hans Lickliter, Frederick C. Houghton, Jason H. Safabash, Susan M. McConnell, April A. Marano
  • Patent number: 7303543
    Abstract: An infusion set is provided for use in delivering fluid through a cannula, which is housed on a cannula housing, to a selected subcutaneous infusion site on a patient. The fluid is generally a medication, for example, insulin. The cannula is in fluid communication with a fluid passageway surrounded by a projection on the cannula housing that includes one or more rail-like extensions acting as connection guides. A connector connects the cannula housing to a fluid delivery system, such as an infusion pump. The connector includes a connecting needle and one or more guide arms that slide over the rail-like extensions to guide the needle into the self-sealing septum. The connector includes one or more locking arms, with barbs at the end, to connect with one or more recesses that are provided in the cannula housing.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: December 4, 2007
    Assignee: Medtronic Minimed, Inc.
    Inventors: Susie E. Maule, Sheldon B Moberg, Arin N. Holecek, Christopher G. Griffin, Julian D. Kavazov, Paul H. Kovelman
  • Patent number: 7297627
    Abstract: A multilayer substrate device formed from a base substrate and alternating metalization layers and dielectric layers. Each layer is formed without firing. Vias may extend through one of the dielectric layers such that two metalization layers surrounding the dielectric layers make. contact with each other. The vias may be formed by placing pillars on top of a metalization layer, forming a dielectric layer on top of the metalization layer and surrounding the pillars, and removing the pillars. Dielectric layers may be followed by other dielectric layers and metalization layers may be followed by other metalization layers. Vias in the substrate may be filled by forming an assembly around the substrate, the assembly including printing sheets containing a conductive ink and pressure plates for applying pressure. A vacuum may be applied to remove air in the ink. Pressure may then be applied to the printing sheets through the pressure plates.
    Type: Grant
    Filed: May 12, 2004
    Date of Patent: November 20, 2007
    Assignee: Medtronic Minimed, Inc.
    Inventors: Rajiv Shah, Shaun Pendo, Edward G. Babiricki
  • Publication number: 20070244383
    Abstract: A system is provided for sensing blood glucose data of a patient. The system includes a sensor, user interface, and an optional auxiliary device. If the connection between the sensor and user interface is by a wire, the sensor remains powered when the wire is disconnected. The communication between the sensor and the user interface may be wireless. The auxiliary device can be a patient monitor or other display or signal device, which displays information about the blood glucose data collected by the sensor. The sensor is connected to sensor electronics, which include a sensor power supply, a voltage regulator, and optionally a memory and processor.
    Type: Application
    Filed: May 7, 2007
    Publication date: October 18, 2007
    Applicant: Medtronic Minimed, Inc.
    Inventors: Cary Talbot, John Mastrototaro, Rajiv Shah, Edward Chernoff, John Mueller, Varaz Shahimirian, Richard Purvis, Wayne Morgan, Rebecca Gottlieb
  • Patent number: 7281314
    Abstract: A system and method for implementing an antenna system for multiple antennas using a single core. The method may include providing a first core, a first winding would about the first core for transmitting/receiving electromagnetic signals, and a second winding for transmitting/receiving electromagnetic signals would about the first core and the first winding. The first winding and the second winding may be wound such that a direction of a first magnetic field generated by the first winding is different than a direction of a second magnetic field generated by the second winding. The method may also include proving for activation circuitry connected to the first winding and the second winding. The activation circuitry may activate the first winding separately from the second winding. The method may provide three or more coils/antennas disposed on a single core. The method may choose stronger of the received magnetic fields from the first or the second coil, for processing.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: October 16, 2007
    Assignee: Medtronic Minimed, Inc.
    Inventors: Philip B. Hess, Wayne A. Morgan
  • Patent number: 7278983
    Abstract: Methods and apparatuses for calculating and transmitting medication dosage or bolus information are provided. A blood glucose meter receives a test strip with a sample of the user's blood and measures the user's blood glucose level with a sensor. The meter then calculates a bolus amount that is transmitted to a medication infusion pump using a radio frequency transmitter or transceiver. The infusion pump receives the bolus amount data and then delivers a bolus of medication to the user based on the calculated bolus estimate. The meter may also transmit commands to, and be used to remotely control, the infusion pump.
    Type: Grant
    Filed: July 22, 2003
    Date of Patent: October 9, 2007
    Assignee: Medtronic Minimed, Inc.
    Inventors: Jeffrey R. Ireland, Cary D. Talbot, Mark C. Estes
  • Patent number: 7267665
    Abstract: A closed loop infusion system controls the rate that fluid is infused into the body of a user. The closed loop infusion system includes a sensor system, a controller, and a delivery system. The sensor system includes a sensor for monitoring a condition of the user. The sensor produces a sensor signal, which is representative of the condition of the user. The sensor signal is used to generate a controller input. The controller uses the controller input to generate commands to operate the delivery system. The delivery system infuses a liquid into the user at a rate dictated by the commands from the controller. Preferably, the sensor system monitors the glucose concentration in the body of the user, and the liquid infused by the delivery system into the body of the user includes insulin.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: September 11, 2007
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Garry M. Steil, Kerstin Rebrin
  • Patent number: 7255690
    Abstract: A piston-type drive mechanism in combination with a positive pressure reservoir for delivery of infusion medium. A coil capable of being electrically activated to provide an electromagnetic field. The coil surrounds a piston channel extending in an axial direction. The piston channel provides a passage for communication of infusion medium from the positive pressure reservoir to an outlet chamber. A piston is located within the piston channel and is moveable axially within the channel to a forward position. The piston is moved toward a retracted position, when the coil is not energized. As the piston is moved to its forward position, pressure moves a valve member into an open position. When the valve member is in the open position, medium from the piston chamber is discharged into the outlet chamber. An outlet is provided in flow communication with the outlet chamber, for discharging infusion medium from the outlet chamber.
    Type: Grant
    Filed: December 26, 2002
    Date of Patent: August 14, 2007
    Assignee: Medtronic Minimed, Inc.
    Inventors: John Gray, Robert W. Bosley
  • Publication number: 20070169533
    Abstract: A sensor system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes a connection detection device, a power source, and a delay circuit. The connection detection device determines if the sensor electronics device is connected to the sensor and transmits a connection signal. The delay circuit receives the connection signal, waits a preset hydration time, and couples the regulated voltage from the power source to an electrode in the sensor after the preset hydration time has elapsed. Alternatively, the sensor electronics device may include an electrical detection circuit and a microcontroller. The electrical detection circuit determines if the plurality of electrodes are hydrated and generates an interrupt if the electrodes are hydrated. A microcontroller receives the interrupt and transmits a signal representative of a voltage to an electrode of the plurality of electrodes.
    Type: Application
    Filed: December 30, 2005
    Publication date: July 26, 2007
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Rajiv Shah, Wayne A. Morgan, David Y. Choy, James L. Henke, Bahar Reghabi, Gopikrishnan Soundararajan, Peter Schultz, Udo Hoss
  • Publication number: 20070170073
    Abstract: A method and program prevents a user from bypassing a limit placed on a specified operating life of a sensor by disconnecting and reconnecting the sensor. The present invention checks a characteristic of the sensor to see if the sensor is used prior to the connection of the sensor, and rejects the sensor if the sensor is determined to have been used before. The process of checking the characteristic of the sensor involves performing an Electrochemical Impedance Spectroscopy (EIS) procedure and calculating an impedance value. The impedance value can be compared to various threshold values for a variety of purposes including the determination of age, condition, hydration, and stabilization of the sensor.
    Type: Application
    Filed: December 29, 2006
    Publication date: July 26, 2007
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Lu Wang, Rajiv Shah, Kenneth Cooper, Richard Yoon, Helen Lee
  • Publication number: 20070173711
    Abstract: A thin film sensor, such as a glucose sensor, is provided for transcutaneous placement at a selected site within the body of a patient. The sensor includes several sensor layers that include conductive layers and includes a proximal segment defining conductive contacts adapted for electrical connection to a suitable monitor, and a distal segment with sensor electrodes for transcutaneous placement. The sensor electrode layers are disposed generally above each other, for example with the reference electrode above the working electrode and the working electrode above the counter electrode. The electrode layers are separated by dielectric layer.
    Type: Application
    Filed: September 23, 2005
    Publication date: July 26, 2007
    Applicant: Medtronic Minimed, Inc.
    Inventors: Rajiv Shah, Rebecca Gottlieb
  • Patent number: 7247138
    Abstract: A reusable analyte sensor site for use with a replaceable analyte sensor for determining a level of an analyte includes a site housing material and a resealable insertion site coupled to one end of the site housing material. Preferably, the site housing material is formed to have an interior cavity with an opening. The site housing material is selected to promote tissue ingrowth and vascularization, and yet be free of tissue ingress. Also, the site housing material permits the analyte to pass through the site housing material to the interior cavity to permit measurement by the replaceable analyte sensor. The resealable insertion site provides a for inserting the replaceable analyte sensor into the interior cavity of the site housing material.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: July 24, 2007
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Bahar Reghabi, Rajiv Shah, Eunjoo Jin, Rebecca Gottlieb, Michael E. Miller, Nannette M. Van Antwerp, Bradley J. Enegren, William P. Van Antwerp, John J. Mastrototaro