Patents Assigned to MiniMed Inc.
  • Patent number: 6585644
    Abstract: An implanted medical device (e.g. infusion pump) and an external device communicate with one another via telemetry messages that are receivable only during windows or listening periods. Each listening period is open for a prescribed period of time and is spaced from successive listening periods by an interval. The prescribed period of time is typically kept small to minimize power consumption. To increase likelihood of successful communication, the window may be forced to an open state, by use of an attention signal, in anticipation of an incoming message. To further minimize power consumption, it is desirable to minimize use of extended attention signals, which is accomplished by the transmitter maintaining an estimate of listening period start times and attempting to send messages only during listening periods. In the communication device, the estimate is updated as a result of information obtained with the reception of each message from the medical device.
    Type: Grant
    Filed: January 22, 2001
    Date of Patent: July 1, 2003
    Assignee: Medtronic Minimed, Inc.
    Inventors: Ronald J. Lebel, Varaz Shahmirian, Timothy J. Starkweather, Philip T. Weiss, Daniel H. Villegas, Robert C. Dennard, John T. Armstrong, John D. Richert
  • Patent number: 6585695
    Abstract: A method and apparatus for a connection interface between a reservoir or syringe, infusion set tubing, and an infusion pump is provided. A base is provided which is adapted to receive a reservoir. The base has a base engagement member, such as a detent, projecting therefrom. A cap is provided which is adapted to receive the base. The cap includes a first cap engagement member, such as a detent opening, which is adapted to removably engage the base detent. The cap further includes a second cap detent opening which is adapted to removably engage the base detent. A piercing member, such as a needle, is disposed in the interior of the cap in such a manner that the needle is separated from the reservoir septum when the base detent is in the first cap detent opening, and the needle pierces the reservoir septum when the base detent is in the second cap detent opening.
    Type: Grant
    Filed: October 28, 1999
    Date of Patent: July 1, 2003
    Assignee: MiniMed Inc.
    Inventors: Randy W. Adair, Sheldon Moberg, Chalirmkiert Srisathapat
  • Patent number: 6577899
    Abstract: An implantable infusion pump possesses operational functionality that is, at least in part, controlled by software operating in two processor ICs which are configured to perform some different and some duplicate functions. The pump exchanges messages with an external device via telemetry. Each processor controls a different part of the drug infusion mechanism such that both processors must agree on the appropriateness of drug delivery for infusion to occur. Delivery accumulators are incremented and decremented with delivery requests and with deliveries made. When accumulated amounts reach or exceed, quantized deliverable amounts, infusion is made to occur. The accumulators are capable of being incremented by two or more independent types of delivery requests. Operational modes of the infusion device are changed automatically in view of various system errors that are trapped, various system alarm conditions that are detected, and when excess periods of time lapse between pump and external device interactions.
    Type: Grant
    Filed: January 22, 2001
    Date of Patent: June 10, 2003
    Assignee: Medtronic Minimed, Inc.
    Inventors: Ronald J. Lebel, Varaz Shahmirian, Sam W. Bowman, IV, Timothy J. Starkweather, Daniel H. Villegas, David Y. Choy, Philip T. Weiss
  • Patent number: 6571128
    Abstract: An implantable infusion pump possesses operational functionality that is, at least in part, controlled by software operating in two processor ICs which are configured to perform some different and some duplicate functions. The pump exchanges messages with an external device via telemetry. Each processor controls a different part of the drug infusion mechanism such that both processors must agree on the appropriateness of drug delivery for infusion to occur. Delivery accumulators are incremented and decremented with delivery requests and with deliveries made. When accumulated amounts reach or exceed, quantized deliverable amounts, infusion is made to occur. The accumulators are capable of being incremented by two or more independent types of delivery requests. Operational modes of the infusion device are changed automatically in view of various system errors that are trapped, various system alarm conditions that are detected, and when excess periods of time lapse between pump and external device interactions.
    Type: Grant
    Filed: January 22, 2001
    Date of Patent: May 27, 2003
    Assignee: Medtronic Minimed, Inc.
    Inventors: Ronald J. Lebel, Varaz Shahmirian, Sam W. Bowman, IV, Timothy J. Starkweather, Wayne A. Morgan
  • Patent number: 6562001
    Abstract: An implantable infusion pump possesses operational functionality that is, at least in part, controlled by software operating in two processor ICs which are configured to perform some different and some duplicate functions. The pump exchanges messages with an external device via telemetry. Each processor controls a different part of the drug infusion mechanism such that both processors must agree on the appropriateness of drug delivery for infusion to occur. Delivery accumulators are incremented and decremented with delivery requests and with deliveries made. When accumulated amounts reach or exceed, quantized deliverable amounts, infusion is made to occur. The accumulators are capable of being incremented by two or more independent types of delivery requests. Operational modes of the infusion device are changed automatically in view of various system errors that are trapped, various system alarm conditions that are detected, and when excess periods of time lapse between pump and external device interactions.
    Type: Grant
    Filed: January 22, 2001
    Date of Patent: May 13, 2003
    Assignee: Medtronic Minimed, Inc.
    Inventors: Ronald J. Lebel, Varaz Shahmirian, Timothy J. Starkweather, Daniel H. Villegas, Philip T. Weiss
  • Patent number: 6564105
    Abstract: An implanted medical device (e.g. infusion pump) and handheld communication device communicate with one another via telemetry wherein transmitted messages have enhanced numbers of and/or regularity of bit transitions to minimize the risk of synchronization loss between transmitted bits of data and received bits of data. Bit transitions for portions of messages may be enhanced by applying a pseudo-randomization scheme to those portions of messages that are transmitted in a way that allows the receiver to extract the original data from the received randomized data. Preferred randomization techniques modify (i.e. randomize) the data using a CRC value that is being accumulated while simultaneously causing the modified data to modify subsequent accumulation of the CRC itself. Upon reception, the reversal of data randomization occurs so that the intended message is appropriately received.
    Type: Grant
    Filed: January 22, 2001
    Date of Patent: May 13, 2003
    Assignee: Medtronic Minimed, Inc.
    Inventors: Timothy J. Starkweather, Ronald J. Lebel, Daniel H. Villegas, Philip T. Weiss, John T. Armstrong, John D. Richert
  • Patent number: 6558320
    Abstract: A medical device module for use in a system with a personal data assistant (PDA) with at least one medical device includes a housing, at least one medical device and a processor. The housing is adapted to couple with the PDA. The at least one medical device interface is coupled to the housing for interfacing with the at least one medical device. The processor is coupled to the at least one medical device interface to process data from the at least one medical device. The processor is also capable of interfacing with the PDA.
    Type: Grant
    Filed: January 20, 2000
    Date of Patent: May 6, 2003
    Assignee: Medtronic MiniMed, Inc.
    Inventors: James D. Causey, III, Richard E. Purvis, James Henke
  • Patent number: 6558351
    Abstract: A closed loop infusion system controls the rate that fluid is infused into the body of a user. The closed loop infusion system includes a sensor system, a controller, and a delivery system. The sensor system includes a sensor for monitoring a condition of the user. The sensor produces a sensor signal, which is representative of the condition of the user. The sensor signal is used to generate a controller input. The controller uses the controller input to generate commands to operate the delivery system. The delivery system infuses a liquid into the user at a rate dictated by the commands from the controller. Preferably, the sensor system monitors the glucose concentration in the body of the user, and the liquid infused by the delivery system into the body of the user includes insulin. The sensor system uses the sensor signal to generate a message that is sent to the delivery system. The message includes the information used to generate the controller input.
    Type: Grant
    Filed: June 1, 2000
    Date of Patent: May 6, 2003
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Garry M. Steil, Kerstin Rebrin, Paul V. Goode, Jr., John J. Mastrototaro, Richard E. Purvis, William P. Van Antwerp, John J. Shin, Cary D. Talbot
  • Patent number: 6554800
    Abstract: A drive motor for an infusion pump system includes a novel outer housing which includes a unitary member which defines a cavity adapted to receive a winding wherein the housing cavity has a length at least as long as length of the winding. In one embodiment, the housing unitary member has an opening at one end and is adapted to receive a housing end member which has a guide track for an armature. Such an arrangement facilitates assembly and disassembly of the motor for fabrication, inspection and repair purposes yet also facilitates proper alignment of the components when assembled. In another aspect, a push member positioned to be engaged by the armature has an engagement face which is at least 40% of the width of the armature engagement face. In still another aspect of the present inventions, the armature head portion is wider than the armature stem portion and has a length at least 10% of the winding length.
    Type: Grant
    Filed: August 9, 2000
    Date of Patent: April 29, 2003
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Hiwa Nezhadian, Rolf O. Orchard
  • Patent number: 6554798
    Abstract: An infusion system for infusing a liquid into a body includes an external infusion device and a remote commander. The external infusion device includes a housing, a receiver, a processor and an indication device. The receiver is coupled to the housing and for receiving remotely generated commands. The processor is coupled to the housing and the receiver to receive remotely generated commands and to control the external infusion device in accordance with the commands. The indication device indicates when a command has been received and indicates when the command is being utilized to control the external infusion device so that the external infusion device is capable of being concealed from view when being remotely commanded. The remote commander includes a commander housing, a keypad for transmitting commands, and a transmitter for transmitting commands to the receiver of the external infusion device.
    Type: Grant
    Filed: June 16, 1999
    Date of Patent: April 29, 2003
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Alfred E. Mann, Causey D. James, Alan Haubach, Luis J. Malave, John H. Livingston, Clifford W. Hague, Chalirmkiert Srisathapat, Jay Yonemoto, Deborah Ruppert, Dennis P. Bishop
  • Patent number: 6555986
    Abstract: A method and apparatus for automatically detecting an occlusion or drive system failure in a medication infusion system is provided. The electrical current to an infusion pump is measured and compared against a baseline average current. If the current exceeds a threshold amount, an alarm is triggered. Alternatively, pump motor encoder pulses are measured during a pump cycle. If the number of pulses do not correspond within a normal range, an alarm is triggered. After any alarm is triggered, the pump motor is driven in reverse for an incremental distance in order to relieve the fluid pressure in the system.
    Type: Grant
    Filed: December 13, 2001
    Date of Patent: April 29, 2003
    Assignee: MiniMed Inc.
    Inventor: Sheldon Moberg
  • Patent number: 6551276
    Abstract: An infusion system for infusing a liquid into a body includes an external infusion device and a remote commander. The external infusion device includes a housing, a receiver, a processor and an indication device. The receiver is coupled to the housing and for receiving remotely generated commands. The processor is coupled to the housing and the receiver to receive remotely generated commands and to control the external infusion device in accordance with the commands. The indication device indicates when a command has been received and indicates when the command is being utilized to control the external infusion device so that the external infusion device is capable of being concealed from view when being remotely commanded. The remote commander includes a commander housing, a keypad for transmitting commands, and a transmitter for transmitting commands to the receiver of the external infusion device.
    Type: Grant
    Filed: December 17, 1999
    Date of Patent: April 22, 2003
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Alfred E. Mann, James D. Causey, III, Alan Haubach, Luis J. Malave, John Livingston, Cliff Hague, Chad Srisathapat, Jay Yonemoto, Deborah Ruppert, Dennis P. Bishop, Adrian Gut, Bob Murtfeldt
  • Publication number: 20030069614
    Abstract: An implanted medical device (e.g. infusion pump) and an external device communicate with one another via telemetry messages that are receivable only during windows or listening periods. Each listening period is open for a prescribed period of time and is spaced from successive listening periods by an interval. The prescribed period of time is typically kept small to minimize power consumption. To increase likelihood of successful communication, the window may be forced to an open state, by use of an attention signal, in anticipation of an incoming message. To further minimize power consumption, it is desirable to minimize use of extended attention signals, which is accomplished by the transmitter maintaining an estimate of listening period start times and attempting to send messages only during listening periods. In the communication device, the estimate is updated as a result of information obtained with the reception of each message from the medical device.
    Type: Application
    Filed: July 29, 2002
    Publication date: April 10, 2003
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Sam W. Bowman, Ronald J. Lebel, Daniel H. Villegas, John C. Gord
  • Patent number: 6537268
    Abstract: Embodiments of medical infusion pumps are provided that include structural elements for providing sources of compliance within a fluid path within the pump. Some preferred embodiments provide implantable infusion pumps with compliance positioned between an exit port of a pumping mechanism and an outlet (e.g. an opening in a catheter) of the infusion pump. Other embodiments provide compliance in fluid path in proximity to entrance port of the pumping mechanism. Insertion of compliance in a flow path that is down stream of the pumping mechanism may aid in minimizing negative effects associated with attempting to force fluid through a restricted flow path that is further down-stream, such as that offered by a catheter or other outlet component. Insertion of compliance before the pumping mechanism may aid in reducing negative effects associated with an up stream restricted flow path, such as that which might be offered by a rigid filter located between the reservoir and the pumping mechanism.
    Type: Grant
    Filed: June 18, 1999
    Date of Patent: March 25, 2003
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Scott R. Gibson, Peter C. Lord, Eric M. Lorenzen, Susan M. McConnell, John F. Gray, Robert W. Bosley
  • Patent number: 6520936
    Abstract: Embodiments of implantable infusion pumps are provided that use a process of converting a first substance to a second gaseous substance (e.g. by electrolysis) to provide a motivating force to expel a desired fluid (e.g. drug or medication) from the pump into the body of a patient. An expandable sack may be provided around a gas producing electrolytic cell, such that as the gas expands it displaces a portion of the volume originally allocated to the desired fluid, and thereby forces the fluid from the pump. Pumps may be provided with a double septum to allow refilling of the desired fluid while simultaneously allowing removal of the generated gas from the system while using a single needle. Recharging of pump batteries may occur by direct electrical conduction through one or more needles and/or by r.f. energy transfer. Programming of the pump may occur by way of conductive paths provided by one or more needles or by means of r.f. transfer.
    Type: Grant
    Filed: June 8, 2000
    Date of Patent: February 18, 2003
    Assignee: Medtronic Minimed, Inc.
    Inventor: Alfred E. Mann
  • Patent number: 6520938
    Abstract: An improved medication infusion set is provided of the type having a soft cannula for subcutaneous delivery of a selected medication to a patient. The infusion set comprises a cannula housing having a soft cannula protruding therefrom and a self-sealing septum mounted at an upstream end of the cannula. The cannula housing is initially assembled with an insertion hub having an elongated insertion needle extending through the septum and cannula for transcutaneously placing the cannula followed by separation of the insertion hub from the cannula housing. An infusion hub is then assembled with the cannula housing and includes a short infusion needle for coupling the cannula with the selected medication supplied from a source via a length of infusion tubing.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: February 18, 2003
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Jeffery V. Funderburk, Leif N. Bowman
  • Patent number: 6520326
    Abstract: A glucose sensor package system that includes a glucose sensor and a protective package that indicates exposure to temperature changes to indicate proper temperature control. Also covered are methods of transporting and sterilizing the package. In addition, glucose sensors directed to various sizing and positioning of the electrodes on the glucose sensor are covered.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: February 18, 2003
    Assignee: Medtronic MiniMed, Inc.
    Inventors: K. Collin McIvor, James L. Cabernoch, Kevin D. Branch, Nannette M. Van Antwerp, Edgardo C. Halili, John J. Mastrototaro
  • Publication number: 20030031699
    Abstract: Embodiments of the invention provide polymer coated implantable medical devices having a bioactive material posited in or on at least a portion of the coating layer, wherein the coating layer provides for the controlled release of the bioactive material from the coating layer. Preferably, the medical device is an intravascular stent.
    Type: Application
    Filed: September 30, 2002
    Publication date: February 13, 2003
    Applicant: Medtronic Minimed, Inc.
    Inventor: William P. Van Antwerp
  • Patent number: D471352
    Type: Grant
    Filed: December 7, 2001
    Date of Patent: March 11, 2003
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Lance Shetler, Sheldon B. Moberg, Dave Kimball
  • Patent number: D474762
    Type: Grant
    Filed: December 14, 2001
    Date of Patent: May 20, 2003
    Assignee: Medtronic Minimed, Inc.
    Inventors: Sheldon B. Moberg, Dave Kimball, Timothy Payne