Patents Assigned to MiniMed
  • Patent number: 10420496
    Abstract: A blood glucose sensing system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes stabilization circuitry. The stabilization circuitry causes a first voltage to be applied to one of the electrodes for a first timeframe and causes a second voltage to be applied to one of the electrodes for a second timeframe. The stabilization circuitry repeats the application of the first voltage and the second voltage to continue the anodic-cathodic cycle. The sensor electronics device may include a power supply, a regulator, and a voltage application device, where the voltage application device receives a regulated voltage from the regulator, applies a first voltage to an electrode for the first timeframe, and applies a second voltage to an electrode for the second timeframe.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: September 24, 2019
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Rajiv Shah, Bahar Reghabi, James L. Henke, Wayne A. Morgan, Gopikrishnan Soundararajan, David Y. Choy, Peter Schultz, Udo Hoss
  • Patent number: 10413183
    Abstract: Embodiments relate to an insertion device that includes: a plunger coupled with a lock collar. The insertion device houses contents including: a striker including self-locking striker snap arm(s) where the striker is kept from firing by a striker spring captured between the plunger and the striker when the insertion device is in a cocked position; a sensor assembly; and a needle carrier that holds a piercing member, the needle carrier captured between the striker and a needle carrier spring where a self-releasing snap(s) keeps the needle carrier cocked, where the plunger prevents the self-releasing snap(s) from repositioning and releasing the needle carrier. The striker fires the needle carrier such that the self-locking striker snap arm(s) are positioned to allow the striker to snap down. The needle carrier is then retracted when the user releases the plunger and the piercing member is encapsulated within the insertion device.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: September 17, 2019
    Assignee: Medtronic MiniMed, Inc.
    Inventors: David C. Antonio, Eric Allan Larson, Jose J. Ruelas
  • Patent number: 10417946
    Abstract: The disclosed subject matter relates to diagnostic procedures and related device architectures that check the operating health of a display element of a host electronic device. In certain embodiments, a display apparatus for an electronic device includes a display element, a display controller, a conductive trace, and a detection circuit. The display element has an array of pixel elements formed overlying a substrate and arranged to define a viewable display area. The display controller is coupled to control activation of the array of pixel elements. The conductive trace is formed overlying the substrate and is arranged to bypass the display controller in a layout that does not interfere with visibility of the pixel elements. The detection circuit is coupled to the conductive trace, and it operates to check electrical continuity of the conductive trace to obtain an indication of health of the display element.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: September 17, 2019
    Assignee: Medtronic MiniMed, Inc.
    Inventor: Adam S. Trock
  • Publication number: 20190274600
    Abstract: Embodiments of the invention provide analyte sensors having optimized electrodes and/or configurations of electrode elements as well as methods for making and using such sensors. Typical embodiments of the invention include glucose sensors used in the management of diabetes.
    Type: Application
    Filed: January 7, 2019
    Publication date: September 12, 2019
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Daniel E. Pesantez, Xiaolong Li, Bradley Chi Liang
  • Patent number: 10390740
    Abstract: Disclosed are methods, apparatuses, etc. for determination and application of a metric for assessing a patient's glycemic health. In one particular implementation, a computed metric may be used to balance short-term and long-term risks associated with a particular therapy.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: August 27, 2019
    Assignee: Medtronic Minimed, Inc.
    Inventors: Lane Desborough, Cesar Palerm, Salman Monirabbasi
  • Patent number: 10391242
    Abstract: A method of managing use of an insulin infusion device is presented here. The method identifies bolus calculator event data from glucose data for a user of the infusion device. The bolus calculator event data corresponds to use of a bolus calculator that calculates bolus dosage recommendations based on a user entered carbohydrate consumption value, a user entered current blood glucose value, a user specific carbohydrate ratio value, and a user specific insulin sensitivity value. The method filters the bolus calculator event data to remove glucose data associated with certain conditions, and analyzes the filtered data to detect an event occurrence that is indicative of potential maladjustment of the carbohydrate ratio value or the insulin sensitivity value. The method outputs a recommendation to adjust the carbohydrate ratio value or the insulin sensitivity value, based on characteristics of the detected event occurrence.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: August 27, 2019
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Pratik Agrawal, Brian T. Kannard, Francine R. Kaufman
  • Patent number: 10391239
    Abstract: Various embodiments of the present invention are directed to equalizing pressure in a reservoir containing fluidic media, possibly due to imperfect installation of the reservoir or an external influence such as an altitude or a temperature change. In various embodiments, fluidic media may be expelled from the reservoir through a needle and contained in an interior volume of a pierceable member before the needle pierces the pierceable member to establish a flow path to a user. In other embodiments, fluidic media may be expelled through a port of the reservoir into a chamber or to the outside environment. In further embodiments, fluidic media may be expelled through a channel in a plunger head and out a passage in the reservoir when the channel and passage are aligned. In other embodiments, fluidic media may be expelled through a valve, and the valve may be pierceable by a needle to establish a flow path to the user.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: August 27, 2019
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Eric M. Lorenzen, Edgardo Halili
  • Patent number: 10376640
    Abstract: A modular external infusion device that controls the rate a fluid is infused into an individual's body, which includes a first module and a second module. More particularly, the first module may be a pumping module that delivers a fluid, such as a medication, to a patient while the second module may be a programming module that allows a user to select pump flow commands. The second module is removably attachable to the first module.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: August 13, 2019
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Emilian Istoc, Himanshu Patel
  • Patent number: 10376632
    Abstract: A method and apparatus for a connection interface between a reservoir or syringe, infusion set tubing, and an infusion pump is provided. The reservoir, a base and a cap are connected to form an integrated unit that is capable of being inserted and secured in an infusion pump housing. The cap and the infusion pump are each provided with at least one sensor or at least one detectable feature, arranged to interact with at least one corresponding detectable feature or sensor on the other of the cap and infusion pump device, to detect one or more of the presence, position or other characteristic of the cap when the cap is aligned or coupled with the infusion pump housing. The detectable feature and sensor may be magnetic, RF, mechanical, optical or any combination.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: August 13, 2019
    Assignee: Medtronic MiniMed, Inc.
    Inventors: R. Marie Tieck, Jacob E. Pananen, Afshin Bazargan, Juan M. Alderete, Jr.
  • Patent number: 10376631
    Abstract: A method and apparatus for a connection interface between a reservoir or syringe, infusion set tubing, and an infusion pump is provided. The reservoir, a base and a cap are connected to form an integrated unit that is capable of being inserted and secured in an infusion pump housing. The cap and the infusion pump are each provided with at least one sensor or at least one detectable feature, arranged to interact with at least one corresponding detectable feature or sensor on the other of the cap and infusion pump device, to detect one or more of the presence, position or other characteristic of the cap when the cap is aligned or coupled with the infusion pump housing. The detectable feature and sensor may be magnetic, RF, mechanical, optical or any combination.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: August 13, 2019
    Assignee: Medtronic MiniMed, Inc.
    Inventors: R. Marie Tieck, Jacob E. Pananen, Afshin Bazargan, Juan M. Alderete, Jr.
  • Publication number: 20190241926
    Abstract: Embodiments of the invention provide multilayer analyte sensors having material layers (e.g. high-density amine layers) and/or configurations of material layers that function to enhance sensor function, as well as methods for making and using such sensors. Typical embodiments of the invention include glucose sensors used in the management of diabetes.
    Type: Application
    Filed: February 7, 2018
    Publication date: August 8, 2019
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Robert McKinlay, Tri T. Dang
  • Publication number: 20190239778
    Abstract: A single flex double-sided electrode useful in a continuous glucose monitoring sensor. In one example, a counter electrode is placed on the back-side of the flex and a work electrode is placed on the top-side of the sensor flex. The electrode is fabricated on physical vapor deposited metal deposited on a base substrate. Adhesion of the electrode to the base substrate is carefully controlled so that the electrode can be processed on the substrate and subsequently removed from the substrate after processing.
    Type: Application
    Filed: February 8, 2018
    Publication date: August 8, 2019
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Akhil Srinivasan, Barry P. Pham, Robert C. Mucic, Tyler R. Wong
  • Publication number: 20190242010
    Abstract: A method of depositing of a film on a substrate with controlled adhesion. The method comprises depositing the film including metal, wherein the metal is deposited on the substrate using physical vapor deposition at a pressure that achieves a pre-determined adhesion of the film to the substrate. The pre-determined adhesion allows processing of the film into a device while the film is adhered to the substrate but also allows removal of the device from the substrate.
    Type: Application
    Filed: February 8, 2018
    Publication date: August 8, 2019
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Akhil Srinivasan, Yifei Wang
  • Patent number: 10363365
    Abstract: Infusion systems including infusion devices and consumables and related operating methods are provided. An exemplary method of operating an infusion device operable to deliver a fluid influencing a physiological condition to a body of a user involves a control module of the infusion device obtaining calibration data associated with a consumable coupled to the infusion device via an interface of the infusion device, determining a delivery command for delivering the fluid to the body of the user based at least in part on the calibration data, and operating a pumping mechanism to deliver the fluid from a reservoir of the consumable to the body of the user in accordance with the delivery command.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: July 30, 2019
    Assignee: Medtronic Minimed, Inc.
    Inventor: Afshin Bazargan
  • Patent number: 10363366
    Abstract: Infusion systems, infusion devices, and related operating methods are provided. An exemplary method of operating an infusion device to deliver fluid to a user in accordance with an operating mode involves obtaining operational information pertaining to one or more prior instances of the operating mode, obtaining status information pertaining to the infusion device, and determining a diagnosis time based at least in part on the operational information. The diagnosis time is prior to a subsequent instance of the operating mode. At the diagnosis time, the method automatically determines the viability of the subsequent instance of the operating mode based at least in part on the status information and automatically generates a notification indicative of a recommended action for the user based at least in part on the viability.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: July 30, 2019
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Salman Monirabbasi, Louis J. Lintereur, Jin Yan
  • Publication number: 20190223771
    Abstract: Embodiments of the invention provide optimized polymeric surfaces adapted for use with implantable medical devices as well as methods for making and using such polymeric surfaces. These polymer surfaces have a constellation of features that function to inhibit or avoid an inflammatory immune response generated by implantable medical devices. Typical embodiments of the invention include an implantable glucose sensor used in the management of diabetes having a polymer surface with the disclosed constellation of features.
    Type: Application
    Filed: January 23, 2018
    Publication date: July 25, 2019
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Jia Yao, Daniel E. Pesantez, Anuradha Biswas Bhatia, Akhil Srinivasan, Guangping Zhang, Andrea Varsavsky, Raghavendhar Gautham
  • Patent number: 10349872
    Abstract: A single, optimal, fused sensor glucose value may be calculated based on respective sensor glucose values of a plurality of redundant working electrodes (WEs) of a glucose sensor. Respective electrochemical impedance spectroscopy (EIS) procedures may be performed for each of the WEs to obtain values of membrane resistance (Rmem) for each WE. A noise value and a calibration factor (CF) value may be calculated for each WE, and respective fusion weights may be calculated for Rmem, noise, and CF for each WE. An overall fusion weight may then be calculated based on the WE's Rmem fusion weight, noise fusion weight, and CF fusion weight, such that a single, optimal, fused sensor glucose value may be calculated based on the respective overall fusion weight and sensor glucose value of each of the plurality of redundant working electrodes.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: July 16, 2019
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Andrea Varsavsky, Yunfeng Lu, Jay Mung
  • Patent number: 10350353
    Abstract: A medical device includes a first housing portion (FHP) and a second housing portion (SHP) configured to be to be movable relative to each other from a first position to operatively engage at a second position to couple at least one of a drive device and a needle-inserting device supported by one of the FHP and the SHP to a reservoir supported by the other of the FHP and the SHP. Electronic circuitry configured to detect at least one of a first magnetic interaction between a magnet and at least one of a first magnetically attractive material and a first magnet-responsive device and a second magnetic interaction between the magnet and at least one of a second magnetically attractive material and a second magnet-responsive device, and to provide a signal or a change in state in response to detecting at least one of the interactions.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: July 16, 2019
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Ian B. Hanson, Paul F. Bente, IV
  • Patent number: 10352941
    Abstract: Methods of covalently attaching heparin to a membrane comprising plasma treating the membrane to produce an amino-functionalized membrane; and reacting the amino-functionalized membrane with heparin under conditions in which heparin becomes covalently attached to the amino-functionalized membrane, wherein said heparin is indirectly attached via a spacer to said amino-functionalized membrane and/or said heparin is attached from a single site in said heparin to a single site on said amino-functionalized membrane or to said spacer. Also disclosed are analyte sensors.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: July 16, 2019
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Jeff T. Suri, Eric Patterson
  • Patent number: 10342468
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: July 9, 2019
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Jenn-Hann Larry Wang, Michael E. Miller, Raghavendhar Gautham, Yiwen Li, Rajiv Shah