Patents Assigned to MiniMed
  • Publication number: 20090299290
    Abstract: An external infusion device for infusion of a fluid into a body from a reservoir includes a drive system, a housing, electronic control circuitry and at least one vent port. The drive system is operatively coupled with a reservoir to infuse a fluid into a body. The housing is adapted for use on an exterior of the body, and is sized to contain at least a portion of a reservoir. In addition, the drive mechanism is at least partially contained within the housing, and operatively couples with the at least a portion of a reservoir within the housing. Also, the housing is sized to be carried by a user without significant restriction on mobility. The electronic control circuitry is coupled to the drive system to control infusion of the fluid into the body. Moreover, the housing has at least one vent port that permits the passage of air into and out of the housing and inhibits the passage of liquids into the housing through the at least one vent port.
    Type: Application
    Filed: August 7, 2009
    Publication date: December 3, 2009
    Applicant: MEDTRONIC MINIMED, INC.
    Inventor: Sheldon B. Moberg
  • Publication number: 20090299301
    Abstract: An introducer is provided for introducing a sensor into the body of a patient. The introducer connects to a sensor hub. When the sensor hub and introducer are connected, the introducer needle is exposed. When the sensor hub and introducer are disconnected, a needle cover and the needle move with respect to each other so that the needle cover substantially covers the needle, protecting a user from being injured by the needle.
    Type: Application
    Filed: May 28, 2008
    Publication date: December 3, 2009
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Rebecca K. Gottlieb, Rajiv Shah, Katherine T. Wolfe, Eric Allan Larson
  • Publication number: 20090292249
    Abstract: An insertion device, generally used with an infusion set, including a needle being adapted for puncturing at one end and including at the opposite end a hub. The hub includes a handle part and a guard part that are capable of securing the needle through the use of locks. Locking structures are used to secure the insertion device in a position where the needle is covered in a locked position, avoiding unintended contact with the needle.
    Type: Application
    Filed: June 8, 2009
    Publication date: November 26, 2009
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: SHELDON B. MOBERG, Susie E. Maule, Mark D. Holt, Paul S. Cheney, II, Arin N. Holecek, Christopher G. Griffin, Julian D. Kavazov
  • Publication number: 20090292250
    Abstract: An insertion device, generally used with an infusion set, including a needle being adapted for puncturing at one end and including at the opposite end a hub. The hub includes a handle part and a guard part that are capable of securing the needle through the use of locks. Locking structures are used to secure the insertion device in a position where the needle is covered in a locked position, avoiding unintended contact with the needle.
    Type: Application
    Filed: June 8, 2009
    Publication date: November 26, 2009
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Sheldon B. Moberg, Susie E. Maule, Mark D. Holt, Paul S. Cheney, II, Arin N. Holecek, Christopher G. Griffin, Julian D. Kavazov
  • Patent number: 7621893
    Abstract: An improved pump, reservoir and reservoir piston are provided for controlled delivery of fluids. A motor is operably coupled to a drive member, such as a drive screw, which is adapted to advance a plunger slide in response to operation of the motor. The plunger slide is removably coupled to the piston. A method, system, and an article of manufacture for automatically detecting an occlusion in a medication infusion pump is provided. The electrical current to an infusion pump is measured. Based on measurements of one or more variables, the infusion pump detects whether there is an occlusion in the system. The methods of detecting occlusions may be dynamic.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: November 24, 2009
    Assignee: Medtronic Minimed, Inc.
    Inventors: Sheldon B. Moberg, Ian B. Hanson, Cary D. Talbot
  • Publication number: 20090267774
    Abstract: An automobile monitoring system to monitor user body characteristics, includes at least one sensor to monitor at least one user body characteristic. The at least one sensor is operatively coupled to a body of a user to monitor the at least one user body characteristic while the user is operating an automobile. The at least one user body characteristic is at least a glucose level of the user's body. At least one transmitter is operatively coupled to the at least one sensor to communicate sensor data obtained from the at least one sensor while the user is operating the automobile. Automobile electronics are operatively coupled to the at least one transmitter to receive sensor data from the at least one sensor while the user is operating the automobile. The automobile electronics provide the sensor data to the user while the user is operating the automobile.
    Type: Application
    Filed: April 15, 2009
    Publication date: October 29, 2009
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Bradley J. Enegren, Himanshu Patel, Bogdan Madzar, Richard K. Yoon, Ajit S. Narang
  • Publication number: 20090267775
    Abstract: An automobile monitoring system to monitor user body characteristics includes at least one sensor to monitor at least one user body characteristic. The at least one sensor is operatively coupled to a body of a user to monitor the at least one user body characteristic while the user is operating an automobile. The at least one user body characteristic is at least a glucose level of the user's body. At least one transmitter is operatively coupled to the at least one sensor to communicate sensor data obtained from the at least one sensor while the user is operating the automobile. Automobile electronics are operatively coupled to the at least one transmitter to receive sensor data from the at least one sensor while the user is operating the automobile. The automobile electronics provide the sensor data to the user while the user is operating the automobile. A global positioning system (GPS) is operatively coupled to the automobile electronics to determine a current location of the user.
    Type: Application
    Filed: April 15, 2009
    Publication date: October 29, 2009
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Bradley J. Enegren, Himanshu Patel, Bogdan Madzar, Richard K. Yoon, Ajit S. Narang
  • Publication number: 20090270705
    Abstract: An automobile monitoring system to monitor user body characteristics includes at least one sensor to monitor at least one user body characteristic. The at least one sensor is operatively coupled to a body of a user to monitor the at least one user body characteristic while the user is operating an automobile. The at least one user body characteristic is at least a glucose level of the user's body. At least one transmitter is operatively coupled to the at least one sensor to communicate sensor data obtained from the at least one sensor while the user is operating the automobile. Automobile electronics are operatively coupled to the at least one transmitter to receive sensor data from the at least one sensor while the user is operating the automobile. The automobile electronics provide the sensor data to the user while the user is operating the automobile. A global positioning system (GPS) is operatively coupled to the automobile electronics to determine a current location of the user.
    Type: Application
    Filed: April 15, 2009
    Publication date: October 29, 2009
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Bradley J. Enegren, Himanshu Patel, Bogdan Madzar, Richard K. Yoon, Ajit S. Narang
  • Patent number: 7602310
    Abstract: A telemetered characteristic monitor system includes a remotely located data receiving device, a sensor for producing signal indicative of a characteristic of a user, and a transmitter device. The transmitter device includes a housing, a sensor connector, a processor, and a transmitter. The transmitter receives the signals from the sensor and wirelessly transmits the processed signals to the remotely located data receiving device. The processor coupled to the sensor processes the signals from the sensor for transmission to the remotely located data receiving device. The data receiving device may be a characteristic monitor, a data receiver that provides data to another device, an RF programmer for a medical device, a medication delivery device (such as an infusion pump), or the like.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: October 13, 2009
    Assignee: Medtronic Minimed, Inc.
    Inventors: Alfred E. Mann, Richard E. Purvis, John J. Mastrototaro, James D. Causey, James Henke, Peter Hong, John H. Livingston, Clifford W. Hague, Brad T. Hite
  • Patent number: 7597682
    Abstract: An external infusion device for infusion of a fluid into a body from a reservoir includes a drive system, a housing, electronic control circuitry and at least one vent port. The drive system is operatively coupled with a reservoir to infuse a fluid into a body. The housing is adapted for use on an exterior of the body, and is sized to contain at least a portion of a reservoir. In addition, the drive mechanism is at least partially contained within the housing, and operatively couples with the at least a portion of a reservoir within the housing. Also, the housing is sized to be carried by a user without significant restriction on mobility. The electronic control circuitry is coupled to the drive system to control infusion of the fluid into the body. Moreover, the housing has at least one vent port that permits the passage of air into and out of the housing and inhibits the passage of liquids into the housing through the at least one vent port.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: October 6, 2009
    Assignee: Medtronic MiniMed, Inc.
    Inventor: Sheldon B. Moberg
  • Publication number: 20090234213
    Abstract: An infusion system is for infusing a fluid into the body of a patient. The infusion system includes at least one sensor for monitoring blood glucose concentration of the patient and an infusion device for delivering fluid to the patient. The sensor produces at least one sensor signal input. The infusion device uses the at least one sensor signal input and a derivative predicted algorithm to determine future blood glucose levels. The infusion device delivers fluid to the patient when future blood glucose levels are in a patient's target range. The infusion device is capable of suspending and resuming fluid delivery based on future blood glucose levels and a patient's low shutoff threshold. The infusion device suspends fluid delivery when future blood glucose levels falls below the low shutoff threshold. The infusion device resumes fluid delivery when a future blood glucose level is above the low shutoff threshold.
    Type: Application
    Filed: May 6, 2009
    Publication date: September 17, 2009
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Andrew C. Hayes, John J. Mastrototaro, Sheldon B. Moberg, John C. Mueller, JR., H. Bud Clark, Mike Charles Vallet Tolle, Gary L. Williams, Bihong Wu, Garry M. Steil
  • Publication number: 20090227855
    Abstract: An infusion system that includes a controller device and a communication system to provide for two-way communication between the controller device and an infusion device that controls delivery of fluids to a user's body. Either the controller device or the infusion device may be integrated with a characteristic determining device in a single housing. The housing, in turn, may include a test-strip receptacle and an illuminator disposed so as to illuminate an area covering the receptacle and a test-strip inserted therein. The illuminator may be configured to be activated automatically when a test strip is inserted into the receptacle, selectively by the user via a button, key, or similar mechanism, and/or when the ambient light level, measured, e.g., with a light sensor, falls below a predetermined intensity. The illuminator may be a LED emitting white light, and may provide illumination at various levels of intensity.
    Type: Application
    Filed: December 23, 2008
    Publication date: September 10, 2009
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Michael A. Hill, Ulrich Rankers, Sheldon B. Moberg, Daniel Chan Chiu
  • Patent number: 7577470
    Abstract: A long term analyte sensor for measuring at least one analyte in the body of a user and which includes a housing, a plurality of analyte contacting sensor elements and at least one structure for relaying information away from the sensor. This plurality of analyte contacting sensor elements are typically disposed in an array. The analyte sensor further includes at least one sensor protection membrane that is controllable in a manner such that sensor elements may be activated (e.g. exposed to the external environment) at different times so as to extend the useful life of the sensor. In illustrative analyte sensors, the analyte is glucose.
    Type: Grant
    Filed: November 15, 2004
    Date of Patent: August 18, 2009
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Rajiv Shah, Rebecca K. Gottlieb, Eric A. Grovender, Shaun Pendo, Paul Citron, William P. Van Antwerp
  • Publication number: 20090198117
    Abstract: Embodiments of the invention provide analyte sensors having nanostructured electrodes as well as methods for making and using such sensors. In certain embodiments of the invention, the sensor includes a carbon nanotube electrode and a analyte limiting membrane that modulates the ability of a analyte to contact the carbon nanotube electrode.
    Type: Application
    Filed: January 28, 2009
    Publication date: August 6, 2009
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Kenneth W. Cooper, Ratnakar Vejella, Gopikrishnan Soundararajan, Rajiv Shah
  • Patent number: 7569030
    Abstract: A system and process for providing safety limits on the delivery of an infusion formulation by an infusion pump system in response to a sensed biological state. The safety limits may comprise user-initiated event signals corresponding to events that may significantly affect the biological state. The safety limits may further comprise user-initiated event ranking signals for respective events which specify a degree, quantity, or measure for the respective event. The user-initiated event and event ranking signals may be communicated to a computing element associated with the infusion pump by an associated communication device having a user interface which comprises a plurality of user-selectable operators for entering information about the events and event rankings.
    Type: Grant
    Filed: November 3, 2004
    Date of Patent: August 4, 2009
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Ronald J. Lebel, Timothy Starkweather
  • Patent number: 7569050
    Abstract: A delivery device includes a durable housing portion and a separable disposable portion that selectively engage and disengage from each other. The disposable housing portion secures to the patient and may be disposed of after it has been in use for a prescribed period. Components that normally come into contact with a patient or with infusion media are supported by the disposable housing portion for disposal after the prescribed use, while the durable housing portion supports electronics for controlling delivery of infusion media from the reservoir and a drive device and drive linkage.
    Type: Grant
    Filed: August 23, 2005
    Date of Patent: August 4, 2009
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Sheldon B. Moberg, Ian B. Hanson, Paul S. Cheney, II
  • Patent number: 7552522
    Abstract: A method and apparatus for enhancing the integrity of an implantable sensor. Voids formed between an outer tubing and a sensor substrate or spacing element may be back-filled with a curable, implantable material, minimizing the extent to which unwanted fluids diffuse within the sensor. An enzyme or protein matrix pellet below the sensor window may be pre-treated with a reducing agent to enhance its bond stability, and to reduce undesired swelling that may cause the sensor window to detach or leak. The bonding between the enzyme pellet and a hydrogel layer may be reinforced by application of an intervening bonding layer of a protein material, such as human serum albumin (HSA). The size of the window may be minimized by minimizing the size of an underlying electrode, providing reduced flux and lengthening sensor. A coating may be deposited on the surface of the sensor leads, providing stiffening and lubrication.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: June 30, 2009
    Assignee: Medtronic Minimed, Inc.
    Inventors: Rajiv Shah, Yanan Zhang, Rebecca Gottlieb, Bahar Reghabi, Michael Miller
  • Patent number: 7547281
    Abstract: An infusion system is for infusing a fluid into the body of a patient. The infusion system includes at least one sensor for monitoring blood glucose concentration of the patient and an infusion device for delivering fluid to the patient. The sensor produces at least one sensor signal input. The infusion device uses the at least one sensor signal input and a derivative predicted algorithm to determine future blood glucose levels. The infusion device delivers fluid to the patient when future blood glucose levels are in a patient's target range. The infusion device is capable of suspending and resuming fluid delivery based on future blood glucose levels and a patient's low shutoff threshold. The infusion device suspends fluid delivery when future blood glucose levels falls below the low shutoff threshold. The infusion device resumes fluid delivery when a future blood glucose level is above the low shutoff threshold.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: June 16, 2009
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Andrew C. Hayes, John J. Mastrototaro, Sheldon B. Moberg, John C. Mueller, Jr., H. Bud Clark, Mike Charles Vallet Tolle, Gary L. Williams, Bihong Wu, Garry M. Steil
  • Publication number: 20090149728
    Abstract: The invention provides methods and apparatus for detecting an analyte in blood. The apparatus is particularly suited for bringing a sensor into direct contact with blood in vivo. The apparatus comprises a sensor that detects the presence of an analyte and an assembly means. The assembly means has a sensor end, wherein the sensor end of the assembly means is affixed to the sensor, and the assembly means is adapted for coupling with a venous flow device. By coupling with a venous flow device, the assembly means brings the sensor into direct contact with blood flowing through the venous flow device. Examples of venous flow devices that bring the sensor into direct contact with the blood of a subject include, but are not limited to, intravenous catheters and external blood loops, such as are used in extra corporeal membrane oxygenation or hemodialysis.
    Type: Application
    Filed: November 4, 2008
    Publication date: June 11, 2009
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Nannette M. Van Antwerp, Bradley J. Enegren, John J. Mastrototaro, Rajiv Shah, Udo Hoss, Yanan Zhang, Jenn-Hann Wang, Kent L. Clark
  • Publication number: 20090150186
    Abstract: A diabetes data management system selects variable threshold parameters to that are utilized in a report. A first low threshold glucose reading and a first high threshold glucose reading for a before meal event timeframe are selected. A second low threshold glucose reading and a second high threshold glucose reading are selected for an after meal event timeframe. The threshold readings are stored in a database. The diabetes data management system analyzes glucose behavior around meal events. The system receives a plurality of glucose readings for a time period, receives a first time range as a pre-meal analysis period for the first meal event and receives a second time range as a post-meal analysis period for the first meal event. The system creates a graph which highlights the pre-meal analysis period, the post-meal analysis period, and displays the plurality of glucose readings for the time period.
    Type: Application
    Filed: September 11, 2008
    Publication date: June 11, 2009
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Gary Cohen, John J. Mastrototaro, Keith DeBrunner, Steven B. Hobmann