Patents Assigned to MiniMed
  • Patent number: 6997907
    Abstract: An insertion set for insertion through the skin of a patient includes at least one piercing member adapted to be secured to an insertion device and a set housing to be removable from the insertion device while maintaining installation of the insertion set. At least a portion of the at least one piercing member is insertable through the skin. The set housing is coupled to the at least one piercing member and is adapted so that it is shaped to fit an insertion device to orient the at least one piercing member for placement through the skin of at least a portion of the at least one piercing member at a predetermined angle relative to the skin to install the insertion set. The at least one piercing member is adapted to be retainable by the insertion device during removal from the insertion set.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: February 14, 2006
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Jason H. Safabash, Susan M. McConnell, Randy W. Adair, Jeffery V. Funderburk, April A. Marano, Jeffrey F. Field
  • Patent number: 6997921
    Abstract: A drive mechanism for delivery of infusion medium has a coil and an armature moveable toward a forward position, in response to the electromagnetic field produced by activation of the coil. A piston is moveable axially within a piston channel to a forward position, in response to movement of the armature to its forward position. The armature and piston are moved toward a retracted position, when the coil is not energized. In the retracted position of the piston, a piston chamber is formed between the piston and a valve member and is filled with infusion medium. As the piston is moved to its forward position, the piston chamber volume is reduced and pressure within the piston chamber increases to a point where the pressure moves the valve member into an open position through an outlet.
    Type: Grant
    Filed: December 27, 2001
    Date of Patent: February 14, 2006
    Assignee: Medtronic Minimed, Inc.
    Inventors: John F. Gray, Robert W. Bosley
  • Patent number: 6991096
    Abstract: A packaging system for hydrating sterile devices without comprising the integrity of the sterilization. The packaging system may include an enclosure for enclosing a device requiring hydration, a container containing a hydrate, a base located within the interior of the enclosure and an activating member located within the interior of the enclosure. The container and the device may be located within a receptacle. The receptacle may rest on the base and the activating member may be affixed on top of the receptacle. A force may be exerted on an exterior portion of the enclosure such that the activating member pushes on the receptacle and crushes or ruptures the container. The hydrate located within the container is then released to the device, thereby hydrating the device without breaking the seal of the enclosure. The sterilized environment is therefore maintained and the device is hydrated.
    Type: Grant
    Filed: December 27, 2002
    Date of Patent: January 31, 2006
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Rebecca Gottlieb, Aaron Swanson, Bahar Reghabi, Kevin Branch
  • Publication number: 20060013716
    Abstract: Apparatuses and methods for pumping fluid are disclosed. An exemplary apparatus is a miniature pump that includes a shape memory wire that obtains a plastic condition below a transformation temperature and has a memorized shape such that the shape memory wire produces a work stroke by returning to the memorize shape at least at the transformation temperature. A spring biased against the shape memory wire is deflected by the work stroke to deform the shape memory wire from the memorized shape below the transformation temperature. A fluid pump is coupled to the shape memory wire and driven by the biased spring and shape memory wire to produce a fluid flow. The miniature pump can be incorporated into a self-contained infusion device in the form of a compact self-adhesive patch including a fluid reservoir, control electronics and power supply that is place directly at the infusion site of a user.
    Type: Application
    Filed: September 19, 2005
    Publication date: January 19, 2006
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Clyde Nason, William Stutz, Darren Yap
  • Patent number: 6979326
    Abstract: An infusion system for infusing a liquid into a body includes an external infusion device and a remote commander. The external infusion device includes a housing, a receiver, a processor and an indication device. The receiver is coupled to the housing and for receiving remotely generated commands. The processor is coupled to the housing and the receiver to receive remotely generated commands and to control the external infusion device in accordance with the commands. The indication device indicates when a command has been received and indicates when the command is being utilized to control the external infusion device so that the external infusion device is capable of being concealed from view when being remotely commanded. The remote commander includes a commander housing, a keypad for transmitting commands, and a transmitter for transmitting commands to the receiver of the external infusion device.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: December 27, 2005
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Alfred E. Mann, James D. Causey, III, Alan Haubach, Luis J. Malave, John Livingston, Cliff Hague, Chad Srisathapat, Jay Yonemoto, Deborah Ruppert, Dennis P. Bishop, Adrian Gut, Bob Murtfeldt
  • Patent number: 6978517
    Abstract: A low-profile, durable mounting clip for holding personal devices. The mounting clip may have an essentially inverted “L” shaped configuration including a foot portion having engagement elements for attachment to corresponding engagement elements on a housing of a personal device. A leg portion provides for attachment to an undergarment or other suitable article of clothing. A heel portion located between and connecting the leg portion and foot portion allows the foot portion to flexibly and durably retract from the housing. The mounting clip may include a snap tab beam locking mechanism having a barb for interlocking with a bump provided on the housing or a rotatable cam locking mechanism having one or more radial snap tabs having engagement elements for engaging corresponding surfaces on the mounting clip. The mounting clip may have an essentially inverted “C-shaped” configuration including a first foot, a second foot, and a leg portion.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: December 27, 2005
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Sean Collins, Sheldon B. Moberg, David S. Kimball, Timothy J. Payne, Lance E. Shetler
  • Patent number: 6974437
    Abstract: An implantable infusion pump possesses operational functionality that is, at least in part, controlled by software operating in two processor ICs which are configured to perform some different and some duplicate functions. The pump exchanges messages with an external device via telemetry. Each processor controls a different part of the drug infusion mechanism such that both processors must agree on the appropriateness of drug delivery for infusion to occur. Delivery accumulators are incremented and decremented with delivery requests and with deliveries made. When accumulated amounts reach or exceed, quantized deliverable amounts, infusion is made to occur. The accumulators are capable of being incremented by two or more independent types of delivery requests. Operational modes of the infusion device are changed automatically in view of various system errors that are trapped, various system alarm conditions that are detected, and when excess periods of time lapse between pump and external device interactions.
    Type: Grant
    Filed: January 22, 2001
    Date of Patent: December 13, 2005
    Assignee: Medtronic Minimed, Inc.
    Inventors: Ronald J. Lebel, Timothy J. Starkweather, Philip T. Weiss
  • Publication number: 20050272989
    Abstract: Embodiments of the invention provide analyte sensors having stabilized coating compositions and methods for making and using such sensors. Illustrative embodiments include electrochemical glucose sensors having stabilized glucose oxidase coatings.
    Type: Application
    Filed: June 4, 2004
    Publication date: December 8, 2005
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Rajiv Shah, Bahar Reghabi, Rebecca Gottlieb, Udo Hoss, John Mastrototaro
  • Patent number: 6958705
    Abstract: An implantable infusion pump possesses operational functionality that is, at least in part, controlled by software operating in two processor ICs which are configured to perform some different and some duplicate functions. The pump exchanges messages with an external device via telemetry. Each processor controls a different part of the drug infusion mechanism such that both processors must agree on the appropriateness of drug delivery for infusion to occur. Delivery accumulators are incremented and decremented with delivery requests and with deliveries made. When accumulated amounts reach or exceed, quantized deliverable amounts, infusion is made to occur. The accumulators are capable of being incremented by two or more independent types of delivery requests. Operational modes of the infusion device are changed automatically in view of various system errors that are trapped, various system alarm conditions that are detected, and when excess periods of time lapse between pump and external device interactions.
    Type: Grant
    Filed: January 22, 2001
    Date of Patent: October 25, 2005
    Assignee: Medtronic Minimed, Inc.
    Inventors: Ronald J. Lebel, Varaz Shahmirian, Sam W. Bowman, IV, Timothy J. Starkweather
  • Patent number: 6950708
    Abstract: An implanted medical device (e.g. infusion pump) and an external device communicate with one another via telemetry messages that are receivable only during windows or listening periods. Each listening period is open for a prescribed period of time and is spaced from successive listening periods by an interval. The prescribed period of time is typically kept small to minimize power consumption. To increase likelihood of successful communication, the window may be forced to an open state, by use of an attention signal, in anticipation of an incoming message. To further minimize power consumption, it is desirable to minimize use of extended attention signals, which is accomplished by the transmitter maintaining an estimate of listening period start times and attempting to send messages only during listening periods. In the communication device, the estimate is updated as a result of information obtained with the reception of each message from the medical device.
    Type: Grant
    Filed: July 29, 2002
    Date of Patent: September 27, 2005
    Assignee: Medtronic Minimed, Inc.
    Inventors: Sam W. Bowman IV, Ronald J. Lebel, Daniel H. Villegas, John C. Gord
  • Patent number: 6945760
    Abstract: A drive mechanism for delivery of infusion medium a coil capable of being electrically activated to provide an electromagnetic field. The coil surrounds a piston channel extending in an axial direction. An armature is located adjacent the coil, on one side of the axial channel. The armature is moveable toward a forward position, in response to the electromagnetic field produced by activation of the coil. A piston is located within the piston channel and is moveable axially within the channel to a forward position, in response to movement of the armature to its forward position. The armature and piston are moved toward a retracted position, when the coil is not energized. The armature may be configured with a reduced diameter by including a coil cup for supporting the coil including a shelf portion defining at least a portion of a pole surface of the coil cup.
    Type: Grant
    Filed: August 23, 2004
    Date of Patent: September 20, 2005
    Assignee: Medtronic Minimed, Inc.
    Inventors: John Gray, Robert W. Bosley, Eric Lorenzen
  • Patent number: 6936029
    Abstract: An infusion system for infusing a liquid into a body includes an external infusion device and a remote commander. The external infusion device includes a housing, a receiver, a processor and an indication device. The receiver is coupled to the housing and for receiving remotely generated commands. The processor is coupled to the housing and the receiver to receive remotely generated commands and to control the external infusion device in accordance with the commands. The indication device indicates when a command has been received and indicates when the command is being utilized to control the external infusion device so that the external infusion device is capable of being concealed from view when being remotely commanded. The remote commander includes a commander housing, a keypad for transmitting commands, and a transmitter for transmitting commands to the receiver of the external infusion device.
    Type: Grant
    Filed: January 31, 2002
    Date of Patent: August 30, 2005
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Alfred E. Mann, James D. Causey, III, Alan Haubach, Luis J. Malave, John Livingston, Cliff Hague, Chad Srisathapat, Jay Yonemoto, Deborah Ruppert, Dennis P. Bishop, Adrian Gut, Bob Murtfeldt
  • Patent number: 6932584
    Abstract: A drive mechanism for delivery of infusion medium a coil capable of being electrically activated to provide an electromagnetic field. The coil surrounds a piston channel extending in an axial direction. An armature is located adjacent the coil, on one side of the axial channel. The armature is moveable toward a forward position, in response to the electromagnetic field produced by activation of the coil. A piston is located within the piston channel and is moveable axially within the channel to a forward position, in response to movement of the armature to its forward position. The armature and piston are moved toward a retracted position, when the coil is not energized. The armature may be configured with a reduced diameter by including a coil cup for supporting the coil including a shelf portion defining at least a portion of a pole surface of the coil cup.
    Type: Grant
    Filed: December 26, 2002
    Date of Patent: August 23, 2005
    Assignee: Medtronic Minimed, Inc.
    Inventors: John Gray, Robert W. Bosley, Eric Lorenzen
  • Patent number: 6927246
    Abstract: Improved polymer matrices which incorporate fluorescent biosensor molecules as well as methods of making and using these polymer matrices are described. Such matrices can be used in fluorescent biosensors and biosensor systems, including those which are used in the detection of polyhydroxylated analytes such as glucose. The properties of the polymer matrices of the invention renders biosensors utilizing such matrices particularly well-suited for detecting and measuring in-vivo glucose concentrations.
    Type: Grant
    Filed: February 14, 2002
    Date of Patent: August 9, 2005
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Glenn Noronha, Jonathan Reilly, Joseph C. Walsh, Brooks Cochran, Aaron M. Heiss, Bill C. Ponder, David J. Vachon
  • Patent number: 6923936
    Abstract: A sterile device immersed in a sterile buffer and a method for providing same. The sterile device may be a medical device such as a biosensor having a biomolecule as a sensing element such as, for example, a glucose oxidase enzyme. The buffer may be a bicarbonate solution. Both the device and the buffer may be packaged and stored over long term while maintaining sterilization. The sterilization method may comprise a combination of gaseous, liquid and light sterilization.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: August 2, 2005
    Assignee: Medtronic Minimed, Inc.
    Inventors: Aaron J. Swanson, Jennifer M. Reynolds, Rajiv Shah
  • Patent number: 6915147
    Abstract: A sensing apparatus with a connector, a sensor lead and a sensor module with a spacer placed over electrodes that have been deposited on a substrate. The spacer may have a space for receiving an enzyme. End portions of the sensor module may be encapsulated, such as with molded beads. A sensor lead may attach to the sensor module and may have an outer tubing that passes over the module and attaches to the beads at the end of the sensor module. The sensor lead may also attach to the connector such that the sensing apparatus may be electrically coupled to a pump, electronics or other devices. The sensing apparatus may be implanted into a vein or artery.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: July 5, 2005
    Assignee: Medtronic Minimed, Inc.
    Inventors: Ronald J. Lebel, Rajiv Shah, Yanan Zhang, Edward Chernoff, Rudolph A. Montalvo
  • Patent number: 6902207
    Abstract: Apparatuses and methods for connecting and disconnected fluid conduits (e.g. medical tubing) are disclosed. Typical embodiments of the Apparatuses and methods disclosed herein operate with two separate components, the first having a moveable septum and the second having a fixed septum. When the components are engaged, the device allows the flow of fluid through a conduit to which they are coupled. When the components are uncoupled, the device prevents the flow of fluid through the conduit. An exemplary embodiment of the invention includes a housing, a moveable septum slideably coupled with the housing to be alternately disposed in at least a first and second position and a piercing member having a passage for conducting fluid. The moveable septum closes the passage in the first position and is penetrated by the piercing member to open the passage in the second position.
    Type: Grant
    Filed: May 1, 2002
    Date of Patent: June 7, 2005
    Assignee: Medtronic MiniMed, Inc.
    Inventor: Hans Lickliter
  • Patent number: 6895263
    Abstract: A method of calibrating glucose monitor data includes collecting the glucose monitor data over a period of time at predetermined intervals. It also includes obtaining at least two reference glucose values from a reference source that temporally correspond with the glucose monitor data obtained at the predetermined intervals. Also included is calculating the calibration characteristics using the reference glucose values and the corresponding glucose monitor data to regress the obtained glucose monitor data. And calibrating the obtained glucose monitor data using the calibration characteristics is included. In preferred embodiments, the reference source is a blood glucose meter, and the at least two reference glucose values are obtained from blood tests. In additional embodiments, the calculation of the calibration characteristics is obtained using linear regression and in particular embodiments, least squares linear regression.
    Type: Grant
    Filed: May 8, 2002
    Date of Patent: May 17, 2005
    Assignee: Medtronic MiniMed, Inc.
    Inventors: John J. Shin, Kris R. Holtzclaw, Nandita D. Dangui, Sami Kanderian, Jr., John J. Mastrototaro, Peter I. Hong
  • Patent number: 6892085
    Abstract: A glucose sensor package system that includes a glucose sensor and a protective package that indicates exposure to temperature changes to indicate proper temperature control. Also covered are methods of transporting and sterilizing the package. In addition, glucose sensors directed to various sizing and positioning of the electrodes on the glucose sensor are covered.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: May 10, 2005
    Assignee: Medtronic MiniMed, Inc.
    Inventors: K. Collin McIvor, James L. Cabernoch, Kevin D. Branch, Nannette M. Van Antwerp, Edgardo C. Halili, John J. Mastrototaro
  • Patent number: 6880242
    Abstract: A circuit protection device for protection of sensitive components during high energy radiation sterilization that includes a support substrate and a protective housing. The substrate supports the sensitive components. The protective housing is hermetically coupled to the support substrate to seal the sensitive components within the protective housing. Preferably, the protective housing stops high energy used in the high energy sterilization from damaging the sensitive components from a predetermined exposure level of high energy sterilization. The circuit protection device may further include a protective conductor that is coupled to the support substrate on a side which is opposite the protective housing to prevent high energy from entering the opposite side of the support substrate.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: April 19, 2005
    Assignee: MiniMed Inc.
    Inventors: William P. Van Antwerp, Sheana Karre, Adrian Prokop, Sara Akiko Stinson, Jason Fong, James J. Rosenberg