Abstract: Disclosed herein is a surgical instrument configured for attachment to a surgical device. The surgical instrument includes a distal region having a curved internal surface configured to mate with a curved external surface of the surgical device, a rotational locking feature that limits rotational movement of the instrument with respect to the surgical device, and an axial locking feature that limits axial movement of the blade with respect to the surgical device. Methods of using the surgical instruments include sliding the axial locking feature past a corresponding axial locking feature on the surgical device, locking the axial locking feature to the corresponding axial locking feature on the surgical device (thereby limiting axial movement of the elongated blade with respect to the surgical device), adjusting the position of the surgical device using the surgical instrument, and disengaging the axial locking feature (for example, by using a disengagement instrument).
Type:
Grant
Filed:
February 7, 2022
Date of Patent:
August 20, 2024
Assignee:
MIRUS LLC
Inventors:
Noah Roth, Wayne Gray, Kevin R. Strauss, Ryan O'Flaherty, Clint Walker, Antonio Terrell
Abstract: A bone implant for at least partial insertion into a bone and/or cartilage. The bone implant is at least partially formed of a metal alloy of at least about 90 wt % of a solid solution or a rhenium and molybdenum alloy.
Abstract: An orthopedic implant which generally includes a frame structure and a porous structure. Both the frame and porous structure at least partially define at least six surfaces which make a three-dimensional profile of the implant. The porous structure is positioned at least partially within the three-dimensional profile.
Abstract: A medical device and a method and process for at least partially forming a medical device, which medical device has improved physical properties.
Abstract: An example augmented reality (AR) system can include a frame, a lens attached to the frame, and a plurality of cameras attached to the frame. The cameras can be configured to record a real-time image. Optionally, the real-time image can include a portion of a subject's body and/or one or more surgical instruments. Additionally, the AR system can include a plurality of inertial measurement units, where a respective inertial measurement unit is attached to each respective camera. Optionally, the AR system can be configured to display image data (e.g., medical image data) registered and superimposed on the real-time image as seen by the user of the AR system.
Abstract: A medical device and a method and process for at least partially forming a medical device, which medical device has improved physical properties. The one or more improved physical properties of the novel metal alloy can be achieved in the medical device without having to increase the bulk, volume and/or weight of the medical device.
Abstract: A method and process for at least partially forming a medical device. The present invention is generally directed to a medical device that is at least partially made of a novel alloy having improved properties as compared to past medical devices. The novel alloy used to at least partially form the medical device improves one or more properties (e.g., strength, durability, hardness, biostability, bendability, coefficient of friction, radial strength, flexibility, tensile strength, tensile elongation, longitudinal lengthening, stress-strain properties, improved recoil properties, radiopacity, heat sensitivity, biocompatibility, improved fatigue life, crack resistance, crack propagation resistance, etc.) of such medical device.
Abstract: A medical device having improved surface hardness and wear resistance properties. The medical device has a body that includes a molybdenum and rhenium alloy. The outer surface of the body has a nitride surface layer that includes nitrogen, molybdenum and rhenium.