Abstract: Provided is a method for regenerating an aromatic amide compound into a corresponding aromatic nitrile compound, the method realizing a dehydration reaction of providing a target compound selectively at a high yield, with generation of a by-product being suppressed. Also provided is a method for producing an aromatic nitrile compound that decreases the number of steps of the dehydration reaction and significantly improves the reaction speed even at a pressure close to normal pressure. In addition, the above-described production method is applied to a carbonate ester production method to provide a method for producing a carbonate ester efficiently. The above-described methods are realized by a method for producing an aromatic nitrile compound including a dehydration reaction of dehydrating an aromatic amide compound, in which the dehydration reaction uses, as a solvent, any of 1,2-dimethoxybenzene, 1,3-dimethoxybenzene and 1,3,5-trimethoxybenzene.
Abstract: The purpose of this invention is to provide: a hard-coat composition with which it is possible to produce a hard-coat layer having excellent hardness and abrasion-resistance when cured, and having excellent moldability during processing; and a laminate film and the like having such a hard-coat composition. This problem is solved by a curable hard-coat composition containing a (meth)acryloyl polymer and inorganic oxide nanoparticles, wherein the (meth)acryloyl polymer has a (meth)acrylic equivalent of 200-500 g/eq and a weight-average molecular weight of 5,000-200,000.
Abstract: The present invention provides a stabilizer for pyrroloquinoline quinone and/or a salt thereof, wherein the stabilizer comprises one or more sweetening components as active ingredients selected from the group consisting of erythritol, acesulfame potassium, and a reduced starch syrup.
Abstract: The present invention provides a base material for cell culture comprising a polyester resin comprising a dicarboxylic acid unit and a diol unit, wherein 1 to 80% by mol of the diol unit is a diol unit having a cyclic acetal structure.
Abstract: The purpose of the present invention is to provide: a polycarbonate resin which has a narrow molecular weight distribution and in which the formation of low molecular weight oligomers is suppressed; and a method for producing the polycarbonate resin. According to the present invention, provided are a polycarbonate resin containing a structural unit represented by general formula (1), wherein the molecular weight distribution value (Mw/Mn) is 6.0 or less, and the content of oligomers having a molecular weight of less than 1,000 is suppressed to 0.50 mass % or less; and a method for producing the polycarbonate. (In general formula (1), R1-26 represent hydrogen, fluorine, chlorine, bromine, iodine, a C1-9 alkyl group, a C6-12 aryl group, a C1-5 alkoxy group, a C2-5 alkenyl group, or a C7-17 aralkyl group.
Abstract: The problem addressed by this invention is to provide a laminate for molding having excellent moldability and post-curing properties of the hard-coat layer, and which can maintain the surface of the hard-coat layer in a satisfactory state while uncured. This problem is solved by a laminate for molding containing a hard-coat layer and a masking film affixed to the surface of the hard-coat layer, having an adhesive surface, which is the hard-coat layer-side surface of the masking film, with a surface free energy of at least 30.0 (mN/m) measured in accordance with the OWRK method, before being affixed. The hard-coat layer is in an uncured state.
Abstract: Disclosed are a diaryl carbonate containing a compound of the following formula (I) in an amount of less than 1,000 ppm by mass, and a method for producing the same: wherein Rl represents a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an aryl group, or an aryloxy group. Disclosed methods include reacting urea with an alkyl alcohol to provide a dialkyl carbonate; reacting the dialkyl carbonate with an aryl alcohol to provide an alkylaryl carbonate; subjecting the alkylaryl carbonate to disproportionation to yield a mixture comprising a diaryl carbonate; and purifying the mixture.
Abstract: The present embodiment provides a material for forming an underlayer film for lithography, containing at least any of a compound represented by following formula (1) or a resin including a structural unit derived from a compound represented by the following formula (1), wherein R1 represents a 2n-valent group having 1 to 60 carbon atoms, or a single bond, each R2 independently represents a halogen atom, a straight, branched or cyclic alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a thiol group, a hydroxyl group, or a group where a hydrogen atom of a hydroxyl group is substituted with an acid-dissociable group, and may be the same or different in the same naphthalene ring or benzene ring, in which at least one R2 represents a group where a hydrogen atom of a hydroxyl group is substituted with an acid-dissociable group, n is an integer of 1 to 4, and structural formulae of n struct
Abstract: The present invention is able to provide an LGPS-based solid electrolyte characterized by: satisfying a composition of LiuSnvP2SyXz (6?u?14, 0.8?v?2.1, 9?y?16, 0<z?1.6; X represents Cl, Br, or I); and having, in X-ray diffraction (CuK?: ?=1.5405 ?), peaks at least at positions of 2?=19.80°±0.50°, 20.10°±0.50°, 26.60°±0.50°, and 29.10°±0.50°.
Abstract: The present invention provides a material for forming an underlayer film for lithography, containing at least any of a compound represented by following formula (1) or a resin including a structural unit derived from a compound represented by the following formula (1), wherein R1 represents a 2n-valent group having a 1 to 60 carbon atoms, or a single bond, each R2 independently represents a halogen atom, a straight, branched or cyclic alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a thiol group, or a hydroxyl group, and may be the same or different in the same naphthalene ring or benzene ring, n is an integer of 1 to 4, structural formulae of n's structural units in square brackets [ ] may be the same or different when n is an integer of 2 or more, X represents an oxygen atom, a sulfur atom, or a non-bridging group, each m2 is independently an integer of 0 to 7, in which at least
Abstract: A resin composition for a printed wiring board, including: a phenolic compound (A); a maleimide compound (B); an epoxy compound (C); a cyclic carbodiimide compound (D); an inorganic filler (E); and a curing accelerator (F), wherein a content of the inorganic filler (E) is 100 to 250 parts by mass based on 100 parts by mass of a resin solid content.
Abstract: A method for manufacturing an ion conductor including LiCB9H10 and LiCB11H12 is provided. The method includes mixing LiCB9H10 and LiCB11H12 in a molar ratio of LiCB9H10/LiCB11H12=1.1 to 20. An ion conductor including lithium (Li), carbon (C), boron (B) and hydrogen (H) is also provided. The ion conductor has X-ray diffraction peaks at at least 2?=14.9±0.3 deg, 16.4±0.3 deg and 17.1±0.5 deg in X ray diffraction measurement at 25° C., and has an intensity ratio (B/A) of 1.0 to 20 as calculated from A=(X-ray diffraction intensity at 16.4±0.3 deg)?(X-ray diffraction intensity at 20 deg) and B=(X-ray diffraction intensity at 17.1±0.5 deg)?(X-ray diffraction intensity at 20 deg).
Type:
Application
Filed:
August 16, 2019
Publication date:
September 30, 2021
Applicants:
MITSUBISHI GAS CHEMICAL COMPANY, INC., TOHOKU TECHNO ARCH CO., LTD.
Inventors:
Genki NOGAMI, Keita NOGUCHI, Sangryun KIM, Shin-ichi ORIMO
Abstract: Provided is a polyester-based resin composition capable of giving a molded article excellent in transparency and gas-barrier property even though the molded article requires stretching treatment, and also provided is a method for producing the composition. The method for producing a polyester-based resin composition includes a step of obtaining a master batch (M) containing a polyester resin (A) having a cyclic acetal structure or an alicyclic hydrocarbon structure, and a polyamide resin (B), and a step of melt-kneading the master batch (M) with a polyester resin (R) in which 70 mol % or more of the dicarboxylic acid unit is derived from an aromatic dicarboxylic acid and 70 mol % or more of the diol unit is derived from an aliphatic diol, thereby giving a polyester-based resin composition, in this order,. The glass transition temperature of the polyester resin (A) is 105° C. or lower, the content of the polyester resin (A) in the polyester-based resin composition is 0.5 to 15.
Abstract: An object of the present invention is to provide a multilayer container in which yellowing of a regenerated polyester resin at the time of recycle is suppressed and a method for producing the same as well as a method for producing a single-layer container. Furthermore, another object of the present invention is to provide a method for producing a regenerated polyester resin from the foregoing multilayer container and single-layer container. The multilayer container of the present invention includes at least one polyester resin composition layer containing a polyester resin (X) and an amino group-containing compound (A) having a yellowing-suppressing ability; and at least one polyamide resin layer containing a polyamide resin (Y).
Abstract: The objective of the present invention is to provide a method for producing a carbonate derivative in a safe and efficient manner. The method for producing a carbonate derivative according to the present invention is characterized in comprising irradiating light on a composition containing a C1-4 halogenated hydrocarbon having one or more kinds of halogen atoms selected from the group consisting of a chlorine atom, a bromine atom and an iodine atom, a nucleophilic functional group-containing compound and the specific base in the presence of oxygen.
Type:
Grant
Filed:
April 27, 2018
Date of Patent:
September 28, 2021
Assignees:
NATIONAL UNIVERSITY CORPORATION KOBE UNIVERSITY, MITSUBISHI GAS CHEMICAL COMPANY, INC.
Abstract: The present invention employs a compound represented by the following formula (0): wherein RY is a linear, branched, or cyclic alkyl group of 1 to 30 carbon atoms or an aryl group of 6 to 30 carbon atoms; RZ is an N-valent group of 1 to 60 carbon atoms or a single bond; each RT is independently an alkyl group of 1 to 30 carbon atoms optionally having a substituent, an aryl group of 6 to 40 carbon atoms optionally having a substituent, an alkenyl group of 2 to 30 carbon atoms optionally having a substituent, an alkoxy group of 1 to 30 carbon atoms optionally having a substituent, a halogen atom, a nitro group, an amino group, a cyano group, a thiol group, a hydroxy group, or a group in which a hydrogen atom of a hydroxy group is replaced with an acid dissociation group, wherein the alkyl group, the alkenyl group, and the aryl group each optionally contain an ether bond, a ketone bond, or an ester bond, wherein at least one RT is a hydroxy group or a group in which a hydrogen atom of a hydroxy group is
Abstract: The present invention makes it possible to provide a compound represented by formula (1) and a composition for an optical material containing this compound. (Where m+n=4, m represents an integer of from 0 to 3, and n represents an integer of from 1 to 4.) In addition, the present invention makes it possible to provide a method for producing an optical material, the method including a step for adding 0.0001-10 parts by mass of a polymerization catalyst per 100 parts by mass of the composition for an optical material, polymerizing, and curing.
Abstract: Provided are a method for producing carbonate esters, and a catalytic structure for producing carbonate esters, whereby solid catalyst powder formation and detachment are suppressed and superior carbonate ester reaction efficiency is yielded when a catalytic structure constituted by a sufficient quantity of a cerium-oxide-containing solid catalyst supported on a substrate is used. The method for producing carbonate esters includes reacting a monohydric alcohol and carbon dioxide in the presence of a catalytic structure and a hydrating agent. The catalytic structure includes a substrate and a catalytic layer that is formed on at least a portion of the surface of the substrate and contains a solid catalyst and an inorganic binder. The solid catalyst contains cerium oxide. The supported quantity of the solid catalyst is 15 g/m2 to 200 g/m2, inclusive. The inorganic binder contains silica and/or alumina.
Type:
Application
Filed:
July 8, 2019
Publication date:
September 16, 2021
Applicants:
NIPPON STEEL CORPORATION, MITSUBISHI GAS CHEMICAL COMPANY, INC., NIPPON STEEL ENGINEERING CO., LTD.
Abstract: A resin composition according to the present invention contains: (i) a reactant of a cyanate compound (A) and polybutadiene (B) and/or (ii) a reactant of a polymerized product of the cyanate compound (A) and the polybutadiene (B); and a maleimide compound (C).
Abstract: Provided is the method for manufacturing a three-dimensional structure with a less amount of internal voids or bubbles, and also to provide a 3D printer filament used for manufacturing such three-dimensional structure. The method for manufacturing a three-dimensional structure, the method comprises melting and depositing a filament using a 3D printer, the filament comprising a commingled yarn that contains a continuous reinforcing fiber (A) and a continuous thermoplastic resin fiber (B), with a dispersity of the continuous reinforcing fiber (A) in the commingled yarn of 60 to 100%.