Abstract: A manufacturing method of a laminated iron core by laminating a plurality of blanked members to form a laminate, the laminate including a pair of first and second end surfaces and the plurality of blanked members being interlocked by a caulk in a lamination direction of the laminate, includes: forming the laminate such that a protrusion of the caulk protrudes downward from the first end surface being in a downward state; placing the laminate on support such that the protrusion is not in contact with a support surface of the support; and processing the laminate in a state where the laminate is placed on the support.
Type:
Application
Filed:
March 5, 2019
Publication date:
May 13, 2021
Applicant:
MITSUI HIGH-TEC, INC.
Inventors:
Shigeru NAGASUGI, Takashi FUKUMOTO, Jin ODA
Abstract: An antiredeposition agent includes a polyaspartic acid alkali metal having a polydispersity, represented by the ratio (Mw/Mn) of the weight-average molecular weight (Mw) to the number-average molecular weight (Mn), of 1.4 or more and being selected from the group consisting of lithium polyaspartate, potassium polyaspartate, and sodium polyaspartate.
Abstract: A lubricating oil composition includes an ethylene/?-olefin copolymer (A) having 70 to 90 mole % of structural units derived from ethylene and an intrinsic viscosity [?] of 0.3 to 1.0 dl/g.
Abstract: A control unit controls a position of a carrier and an irradiation unit to form a modeled object obtained by curing a photocurable composition. In addition, the control unit controls the position of the carrier and the irradiation unit to form at least a part of a flow channel connected to an outside of a container by curing the photocurable composition in a region irradiated with light, and controls the position of the carrier and the irradiation unit to at least temporarily provide at least one of an enlarged diameter portion and an opening portion.
Abstract: Provided is a polymerization initiator, which has an excellent curing rate and is an alternative to a polymerization initiator system using a benzoyl peroxide-aromatic amine compound, a curable composition containing the polymerization initiator, a dental material and dental filler material containing the composition, and a kit for preparing the curable composition. The polymerization initiator contains one or more compounds (A) selected from the group consisting of a pyrazolidinedione compound and/or pyrazolidine(di)thione compound (A1), a salt (A2) of the compound (A1), and a malonate compound (A3).
Abstract: There is provided a copper powder containing an organic compound containing carbon and nitrogen. The powder has a ratio of carbon content PC (mass %) to specific surface area SSA (m2/g), PC/SSA, of 0.005 to 0.1 and a ratio of nitrogen content PN (mass %) to specific surface area SSA (m2/g), PN/SSA, of 0.001 to 0.05. The organic compound preferably contains two or more of nitrogen atom per molecule and is preferably capable of forming a five-membered ring complex with copper. The organic compound preferably includes one or more of dimethyl glyoxime, ethylenediamine, and polyethyleneimine.
Abstract: A coating material for a gas barrier includes polycarboxylic acid, a polyamine compound, a polyvalent metal compound, and a base, in which (molar number of —COO— groups included in the polycarboxylic acid)/(molar number of amino groups included in the polyamine compound)=100/20 to 100/90.
Abstract: A three-dimensional modeling apparatus includes a container, a carrier, and a blower unit. The container accommodates a curable composition. The carrier is configured to face an inner surface of the container and to have a variable distance with respect to the inner surface. The blower unit performs blowing between the carrier and the container. Further, in a case where the curable composition is cured in the container, the modeled object and the support portion, which connects the carrier and the modeled object, are formed. A wind from the blower unit is at least temporarily output toward at least one of the modeled object and the support portion.
Abstract: An extremely thin copper foil is provided that enables formation of highly fine different wiring patterns with a line/space (L/S) of 10 ?m or less/10 ?m or less on two sides of the copper foil and is thus usable as an inexpensive and readily processable substitution for silicon and glass interposers. The extremely thin copper foil includes, in sequence, a first extremely thin copper layer, an etching stopper layer, and the second extremely thin copper layer. Two sides of the extremely thin copper foil each have an arithmetic average roughness Ra of 20 nm or less.
Abstract: The purpose of the present invention is to obtain an ethylene??-olefin?non-conjugated polyene copolymer that has a low permanent compression set at low temperatures, is flexible, and has an excellent balance of rubber elasticity at low temperatures and tensile strength at normal temperatures. This ethylene-based polymer is an ethylene??-olefin?non-conjugated polyene copolymer that includes units derived from ethylene (A), units derived from an ?-olefin (B) containing 4-20 carbon atoms, and units derived from a non-conjugated polyene (C) and satisfies (1)-(4). (1) The molar ratio of (A) to (B) is 40/60-90/10, (2) the contained amount of the units derived from (C) is 0.1-6.0 mol %, (3) ML(1+4)125° C. is 5-100, and (4) the B value is 1.20 or more.
Abstract: The purpose of the present invention is to obtain an ethylene??-olefin?non-conjugated polyene copolymer that has a low permanent compression set at low temperatures, is flexible, and has an excellent balance of rubber elasticity at low temperatures and tensile strength at normal temperatures. This ethylene-based polymer is an ethylene??-olefin?non-conjugated polyene copolymer that includes units derived from ethylene (A), units derived from an ?-olefin (B) containing 4-20 carbon atoms, and units derived from a non-conjugated polyene (C) and satisfies (1)-(4). (1) The molar ratio of (A) to (B) is 40/60-90/10, (2) the contained amount of the units derived from (C) is 0.1-6.0 mol %, (3) ML(1+4) 125° C. is 5-100, and (4) the B value is 1.20 or more.
Abstract: A solid electrolyte assembly is obtained by joining a solid electrolyte layer having oxide ion conductivity and containing lanthanum and a first electrode layer made of an oxide that is represented by ABO3?? and has a cubic perovskite structure to each other, where A represents an alkaline-earth metal element, B represents a transition metal element, and ? represents a fraction that occurs depending on the valences and amounts of A, B, and O. The oxide contains lanthanum at a part of the A site, and an atom ratio of lanthanum to all the elements occupying the A site is 0.01 or greater and 0.80 or less.
Type:
Application
Filed:
April 16, 2019
Publication date:
April 29, 2021
Applicant:
MITSUI MINING & SMELTING CO., LTD.
Inventors:
Shingo IDE, Kengo SHIMANOE, Ken WATANABE, Koichi SUEMATSU
Abstract: Provided is a nonaqueous electrolyte solution for batteries, which contains an additive A that is composed of a boron compound represented by formula (1), and an additive B that has a lower reductive decomposition potential than the Additive A, in which n represents an integer from 1 to 5, M+ represents an Li+ ion or an H+ ion, and when n is an integer from 2 to 5, more than one M+ may be the same as or different from each other.
Abstract: The present invention provides a freshness-retentive film having high antibacterial characteristics. In the freshness-retentive film according to the present invention, at least one compound selected from the group consisting of palmityldiethanolamine, stearyldiethanolamine, glycerol monolaurate, and diglycerol monolaurate is present on at least one surface of the film at 0.002 to 0.5 g/m2.
Abstract: Provided are a pellicle film, a pellicle frame and a pellicle having a higher EUV transmittance. An exposure pattern plate capable of performing EUV lithography with the pellicle film, the pellicle frame or the pellicle, and a method for producing a semiconductor device, are provided. A pellicle film for exposure extendable over an opening of a support frame and having a thickness of 200 nm or less is provided. The film includes a carbon nanotube sheet. The carbon nanotube sheet includes bundles each including a plurality of carbon nanotubes, the bundles each have a diameter of 100 nm or shorter, and the bundles are aligned in a planar direction in the carbon nanotube sheet.
Type:
Grant
Filed:
December 18, 2018
Date of Patent:
April 27, 2021
Assignees:
MITSUI CHEMICALS, INC., NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
Abstract: The purpose of the present invention is to provide a semiconductor substrate manufacturing method, which prevents detachment of a semiconductor wafer being ground, and which prevents cracking or chipping in a semiconductor substrate obtained. In order to solve the problem, the semiconductor substrate manufacturing method comprises: a polyimide layer forming step of forming a polyimide layer on a support material; a wafer attaching step of affixing the support material and a semiconductor wafer to each other with the polyimide layer disposed therebetween; a wafer grinding step of grinding the semiconductor wafer; a support material peeling step of peeling the support material from the polyimide layer; and a polyimide layer peeling step of peeling the polyimide layer from the semiconductor wafer. The polyimide layer includes polyimide which includes a benzophenone skeleton and an aliphatic structure, wherein an amine equivalent weight is 4000 to 20000.
Abstract: A piezoelectric substrate, comprising: a conductor cord that has a core material and a conductor disposed around the core material; and an elongated piezoelectric body that is disposed around the conductor cord in a spiral manner, unidirectionally along an axial direction of the conductor cord, wherein: the piezoelectric body comprises an optically active helical chiral polymer, a lengthwise direction of the piezoelectric body and a main orientation direction of the helical chiral polymer in the piezoelectric body are substantially parallel to each other, the piezoelectric body has an orientation degree F. of from 0.5 to less than 1.0, and the conductor cord satisfies Formula (b): ?Dmax<tpmin, wherein ?Dmax is a maximum value of a difference in height between a division A that is selected from plural divisions and a division B that is adjacent to the division A, and tpmin is a minimum thickness of the piezoelectric body.
Abstract: Disclosed are a method for producing a laminate including a step of laminating a resin impregnated fiber reinforced composition layer on a metal member, wherein the method includes a step of forming a resin coating on the metal member and a step of laminating a resin impregnated fiber reinforced composition layer containing a resin impregnated fiber reinforced composition containing (I) 20 to 80% by mass of a polymer having a melting point and/or a glass transition temperature of 50 to 300° C., and (C) 20 to 80% by mass of a reinforcing fiber (provided that the sum of the component (I) and the component (C) is taken as 100% by mass) via the above resin coating; and a laminate obtained by the method.