Patents Assigned to MIVI Neuroscience, Inc.
  • Patent number: 11786699
    Abstract: A suction catheter system is described with a suction nozzle that can extend from a guide catheter of the like. The suction nozzle can be positioned by tracking the suction nozzle through a vessel while moving a proximal portion of the suction extension within the lumen of the guide catheter. A suction lumen extends from the proximal end of the guide catheter through at least part of the guide catheter central lumen and through the suction tip. Desirable suction flow can be established using the guide lumen to facilitate the suction. Also, a delivery catheter is described with an elastic tip that can track closely over a guidewire. The elastic tip of the delivery catheter can be expanded to provide for the delivery of medical devices past the tip.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: October 17, 2023
    Assignee: MIVI Neuroscience, Inc.
    Inventors: Matthew F. Ogle, James Alexander, Alexander Halaszyn
  • Patent number: 11771867
    Abstract: A suction catheter system is described with a suction extension interfaced with a guide catheter to form a continuous suction lumen extending through a portion of the guide catheter and through the suction extension. The suction extension can be positioned by tracking the suction nozzle through a vessel while moving a proximal portion of the suction extension within the lumen of the guide catheter. The suction extension can comprise a connecting section with a non-circular cross section for interfacing with the inner lumen of an engagement section of the guide catheter. The tubular body of the guide catheter can have a reduced diameter distal section the can be useful to restrain the movement of the suction extension.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: October 3, 2023
    Assignee: MIVI Neuroscience, Inc.
    Inventor: Matthew F. Ogle
  • Patent number: 11707606
    Abstract: Three groups of guidewire embodiments are described with particularly suitable structures for navigating circuitous vessels, especially blood vessels of the brain. Some of the guidewires have a hyperbolic taper that provides desired flexibility. In some embodiments, an integrated guide structure provides for extension in the blood vessel of a corewire to provide for extended reach of the guidewire. In further embodiments, the guidewire has a flexible tip that can be guided directly by the flow in the vessel.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: July 25, 2023
    Assignee: MIVI Neuroscience, Inc.
    Inventors: James Pokorney, Matthew F. Ogle
  • Patent number: 11617865
    Abstract: A suction catheter system is described with a suction extension interfaced with a guide catheter to form a continuous suction lumen extending through a portion of the guide catheter and through the suction extension. The suction extension can be positioned by tracking the suction nozzle through a vessel while moving a proximal portion of the suction extension within the lumen of the guide catheter. The suction extension can comprise a connecting section with a non-circular cross section for interfacing with the inner lumen of an engagement section of the guide catheter. Proximal fittings attached to the guide catheter can facilitate safe removal of the catheter system from the patient by allowing for the removal of some or all of a tubular extension of the suction extension from the guide catheter behind a hemostatic seal.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: April 4, 2023
    Assignee: MIVI Neuroscience, Inc.
    Inventor: Matthew F. Ogle
  • Patent number: 11576693
    Abstract: Clot engagement element comprising bundle of unwoven fibers can be assembled to form an acute stroke treatment device. The device has the capability of forming a three dimensional filtration matrix comprising effective pores with a distribution of sizes. The bundle of fiber design allows the device to be effectively delivered into circuitous cerebral arteries to remove clot that causes stroke. The fiber bundle based filtration matrix offers the advantages of conforming to the changing inner perimeter of a blood vessel during a clot removal process and thus the capability to effectively retain and remove a clot in the vessel. The filtration matrix offers the additional advantage to trap any break-off of the clot during the removal process. A plurality of fiber bundles can be combined to form an effective clot engagement element. Supplemental engagement structure as well as mechanical treatment structure can be integrated into the stroke treatment device.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: February 14, 2023
    Assignee: MIVI Neuroscience, Inc.
    Inventors: Jason A. Galdonik, Grazyna Wlodarski, John Kirschgessner, Kavitha Ganesan, Matthew F. Ogle
  • Patent number: 11234723
    Abstract: A suction catheter system is described with a suction extension interfaced with a guide catheter to form a continuous suction lumen extending through a portion of the guide catheter and through the suction extension. The suction extension can be positioned by tracking the suction nozzle through a vessel while moving a proximal portion of the suction extension within the lumen of the guide catheter. The suction extension can comprise a connecting section with a non-circular cross section for interfacing with the inner lumen of an engagement section of the guide catheter. The tubular body of the guide catheter can have a reduced diameter distal section the can be useful to restrain the movement of the suction extension. Proximal fittings attached to the guide catheter can facilitate safe removal of the catheter system from the patient by allowing for the removal of some or all of a tubular extension of the suction extension from the guide catheter behind a hemostatic seal.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: February 1, 2022
    Assignee: MIVI Neuroscience, Inc.
    Inventor: Matthew F. Ogle
  • Patent number: 11229445
    Abstract: Clot removal from a patient's vessel, such as an artery, are described using aspiration and hydraulic forces supporting the removal process. Hydraulic forces can be generated by occluding the vessel distal to the clot and delivering liquid between the clot and the occlusive device. The aspiration catheter is positioned proximal to the clot. Catheters designed to facilitate the delivery of hydraulic forces can be based on single lumen designs or dual lumen designs. The catheters may have a fixed internal wire, or in some embodiments the catheters can ride over a wire with a valve/seal positioned to restrict flow into or out from the guide lumen such that the guide lumen can further function for balloon inflation and/or for infusion of liquid.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: January 25, 2022
    Assignee: MIVI Neuroscience, Inc.
    Inventor: Matthew F. Ogle
  • Patent number: 10716915
    Abstract: A suction catheter system is described with a suction nozzle that can extend from a guide catheter of the like. The suction nozzle can be positioned by tracking the suction nozzle through a vessel while moving a proximal portion of the suction extension within the lumen of the guide catheter. A suction lumen extends from the proximal end of the guide catheter through at least part of the guide catheter central lumen and through the suction tip. Desirable suction flow can be established using the guide lumen to facilitate the suction. Also, a delivery catheter is described with an elastic tip that can track closely over a guidewire. The elastic tip of the delivery catheter can be expanded to provide for the delivery of medical devices past the tip.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: July 21, 2020
    Assignee: MIVI Neuroscience, Inc.
    Inventors: Matthew Ogle, James Alexander, Alexander Halaszyn
  • Patent number: 10518066
    Abstract: Three groups of guidewire embodiments are described with particularly suitable structures for navigating circuitous vessels, especially blood vessels of the brain. Some of the guidewires have a hyperbolic taper that provides desired flexibility. In some embodiments, an integrated guide structure provides for extension in the blood vessel of a corewire to provide for extended reach of the guidewire. In further embodiments, the guidewire has a flexible tip that can be guided directly by the flow in the vessel.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: December 31, 2019
    Assignee: MIVI Neuroscience, Inc.
    Inventors: James Pokorney, Matthew F. Ogle
  • Patent number: 10485565
    Abstract: Clot engagement element comprising bundle of unwoven fibers can be assembled to form an acute stroke treatment device. The device has the capability of forming a three dimensional filtration matrix comprising effective pores with a distribution of sizes. The bundle of fiber design allows the device to be effectively delivered into circuitous cerebral arteries to remove clot that causes stroke. The fiber bundle based filtration matrix offers the advantages of conforming to the changing inner perimeter of a blood vessel during a clot removal process and thus the capability to effectively retain and remove a clot in the vessel. The filtration matrix offers the additional advantage to trap any break-off of the clot during the removal process. A plurality of fiber bundles can be combined to form an effective clot engagement element. Supplemental engagement structure as well as mechanical treatment structure can be integrated into the stroke treatment device.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: November 26, 2019
    Assignee: MIVI Neuroscience, Inc.
    Inventors: Jason A Galdonik, Grazyna Wlodarski, John Kirschgessener, Kavitha Ganesan, Matthew F Ogle
  • Patent number: 10478535
    Abstract: A suction catheter system is described with a suction extension interfaced with a guide catheter to form a continuous suction lumen extending through a portion of the guide catheter and through the suction extension. The suction extension can be positioned by tracking the suction nozzle through a vessel while moving a proximal portion of the suction extension within the lumen of the guide catheter. The suction extension can comprise a connecting section with a non-circular cross section for interfacing with the inner lumen of an engagement section of the guide catheter. The tubular body of the guide catheter can have a reduced diameter distal section the can be useful to restrain the movement of the suction extension.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: November 19, 2019
    Assignee: MIVI Neuroscience, Inc.
    Inventor: Matthew F Ogle
  • Patent number: 10463386
    Abstract: Components and corresponding systems are described for providing removal of a clot or fragment thereof to address an acute ischemic stroke condition. In particular, a filter design is presented that provides metal elements below a bundle of polymer fibers to provide more mechanical strength while cushioning the vessel wall from direct contact with the metal elements. Designs of stent retrievers are presented with polymer covers or mounted on the exterior of a microcatheter. Corresponding systems are described that can use various combinations of the components, generally in combination with an aspiration catheter. Corresponding procedures are described that can effectively use the various devices and systems.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: November 5, 2019
    Assignee: MIVI Neuroscience, Inc.
    Inventors: Matthew F. Ogle, Lee R. Gutterman, Richard C. Mattison
  • Patent number: 9597101
    Abstract: Clot engagement element comprising bundle of unwoven fibers can be assembled to form an acute stroke treatment device. The device has the capability of forming a three dimensional filtration matrix comprising effective pores with a distribution of sizes. The bundle of fiber design allows the device to be effectively delivered into circuitous cerebral arteries to remove clot that causes stroke. The fiber bundle based filtration matrix offers the advantages of conforming to the changing inner perimeter of a blood vessel during a clot removal process and thus the capability to effectively retain and remove a clot in the vessel. The filtration matrix offers the additional advantage to trap any break-off of the clot during the removal process. A plurality of fiber bundles can be combined to form an effective clot engagement element. Supplemental engagement structure as well as mechanical treatment structure can be integrated into the stroke treatment device.
    Type: Grant
    Filed: August 1, 2014
    Date of Patent: March 21, 2017
    Assignee: MIVI Neuroscience, Inc.
    Inventors: Jason A Galdonik, Grazyna Wlodarski, John Kirschgessner, Kavitha Ganesan, Matthew F Ogle