Abstract: A system including: a mobile device, including: a camera configured to capture multiple images of a subject; a processor configured to identify a first image of the captured images as a blue frame, wherein the image was captured while the subject was illuminated by blue light, and identify a second image of one of the captured images as a white frame, wherein the image was captured while the subject was illuminated by white light; associate the blue frame with the white frame; detect a feature depicted in the blue frame that is not depicted in the associated white frame, and indicate the detection of the feature to a user; and a user interface display configured to separately render the blue frame and the white frame.
Type:
Grant
Filed:
September 7, 2016
Date of Patent:
August 25, 2020
Assignee:
MOBILEODT LTD.
Inventors:
David Levitz, Ariel Beery, Ronit Slyper
Abstract: A multi-modal imaging and optical property measurement device that is integrated into an interferometer. Data acquired by the multiple imaging modalities in parallel include measurements of single-scattered, multiple-scattered, and diffuse light that enable characterization of different ranges within different depth regions in the sample. The system includes different interferometer configurations and different imaging modalities, and has a signal-processing unit that associates and co-registers interferometric, multi-spectral, and polarization sensitive measurements to derive and analyze optical properties of a sample and enhance an image display of the sample.
Abstract: A polarized light imaging apparatus is provided. In an embodiment, the apparatus comprises a light source for producing light beams; an illumination optic coupled to the light source for guiding the light beams towards the sample; a linear polarizer coupled to the illumination optic and configured to produce a linearly polarized light towards the sample respective of the light beams; a TIR birefringent polarizing prism (BPP) coupled to the sample to maximize a refraction difference between ordinary waves and extraordinary waves of light returning from the sample; and a detection optic unit coupled to the non-TIR BPP for guiding the light waves returning from the sample towards a single polarization sensitive sensor element (SE), the SE is configured to capture at least one frame of the sample respective of the light waves returning from the superficial single-scattering layer of the sample apart from the deeper diffuse layer.
Abstract: A polarized light imaging apparatus is provided. In an embodiment, the apparatus comprises a light source for producing light beams; an illumination optic coupled to the light source for guiding the light beams towards the sample; a linear polarizer coupled to the illumination optic and configured to produce a linearly polarized light towards the sample respective of the light beams; a TIR birefringent polarizing prism (BPP) coupled to the sample to maximize a refraction difference between ordinary waves and extraordinary waves of light returning from the sample; and a detection optic unit coupled to the non-TIR BPP for guiding the light waves returning from the sample towards a single polarization sensitive sensor element (SE), the SE is configured to capture at least one frame of the sample respective of the light waves returning from the superficial single-scattering layer of the sample apart from the deeper diffuse layer.