Patents Assigned to Modar, Inc.
  • Patent number: 5674405
    Abstract: A method of continuous flow hydrothermal oxidation which provides for a low cost means of reaction initiation and propagation. The aqueous-organic feedstock and oxidant are introduced to a small reaction chamber and allowed to mix with the hot, partially reacted contents thereof. This backmixing serves to initiate the reaction of the incoming feedstock. Optionally, the contents of the chamber then pass to a second reactor located downstream, in order to allow for completion of the oxidation reaction.
    Type: Grant
    Filed: July 8, 1995
    Date of Patent: October 7, 1997
    Assignee: Modar, Inc.
    Inventors: Alain L. Bourhis, Glenn T. Hong, William R. Killilea
  • Patent number: 5545337
    Abstract: A process for water oxidation of combustible materials in which during at least a part of the oxidation corrosive material is present and makes contact with at least a portion of the apparatus over a contact area on the apparatus. At least a portion of the contact surface area comprises titanium dioxide coated onto a titanium metal substrate. Such ceramic composites have been found to be highly resistant to environments encountered in the process of supercritical water oxidation. Such environments typically contain greater than 50 mole percent water, together with oxygen, carbon dioxide, and a wide range of acids, bases, and salts. Pressures are typically about 27.5 to about 1000 bar while temperatures range as high as 700.degree. C. The ceramic composites are also resistant to degradation mechanisms caused by thermal stresses.
    Type: Grant
    Filed: November 29, 1994
    Date of Patent: August 13, 1996
    Assignee: Modar, Inc.
    Inventor: Glenn T. Hong
  • Patent number: 5527471
    Abstract: A process for hydrothermal oxidation of combustible materials in which, during at least a part of the oxidation, corrosive material is present and makes contact with at least a portion of the apparatus over a contact area on the apparatus. At least a portion of the contact surface area comprises iridium, iridium oxide, an iridium alloy, or a base metal overlaid with an iridium coating. Iridium has been found to be highly resistant to environments encountered in the process of hydrothermal oxidation. Such environments typically contain greater than 50 mole percent water, together with oxygen, carbon dioxide, and a wide range of acids, bases and salts. Pressures are typically about 27.5 to about 1000 bar while temperatures range as high as 800.degree. C.
    Type: Grant
    Filed: February 2, 1995
    Date of Patent: June 18, 1996
    Assignee: Modar, Inc.
    Inventors: Glenn T. Hong, Vladimir A. Zilberstein
  • Patent number: 5492634
    Abstract: A method for pretreating a halogenated hydrocarbon feed to a hydrothermal oxidation reactor which includes forming a combination of a halogenated hydrocarbon with added alkali under hydrothermal conditions, adding water to the combination, thereby effectuating hydrolysis of the halogenated hydrocarbon so as to liberate halogen ions which are neutralized by the alkali. The neutralized halogen ion, a salt, may be removed from the process prior to or during the oxidation step as brine droplets.
    Type: Grant
    Filed: February 2, 1995
    Date of Patent: February 20, 1996
    Assignee: Modar, Inc.
    Inventors: Glenn T. Hong, William R. Killilea, Alain L. Bourhis
  • Patent number: 5358645
    Abstract: Disclosed is an apparatus and a process for high temperature water oxidation of combustibles in which during at least a part of the oxidation, corrosive material is present and makes contact with at least a portion of the apparatus over a contact area on the apparatus, wherein at least a portion of the contact surface area comprises a zirconia based ceramic, with the temperature of the oxidation process in excess of about 300.degree. C. and the pressure of the oxidation process is in excess of about 27.5 bar (400 psi).
    Type: Grant
    Filed: August 26, 1992
    Date of Patent: October 25, 1994
    Assignee: Modar, Inc.
    Inventors: Glenn T. Hong, William R. Killilea, David W. Ordway
  • Patent number: 5232604
    Abstract: Disclosed is a method of substantially completely oxidizing material in an aqueous phase at supercritical temperatures and sub- or supercritical pressures by initiating the oxidation in the presence of small amounts of strong oxidizing agents that function to increase the initial reaction rate for the oxidation. The strong oxidizing agents suitable for use in the present invention comprise at least one selected from the group consisting of ozone (O.sub.3), hydrogen peroxide (H.sub.2 O.sub.2), salts containing persulfate (S.sub.2 O.sub.8.sup.2-), salts containing permanganate (MnO.sub.4.sup.-), nitric acid (HNO.sub.3), salts containing nitrate (NO.sub.3.sup.-), oxyacids of chlorine and their corresponding salts, hypochlorous acid (HOCl), salts containing hypochlorite (OCl.sup.-), chlorous acid (HOClO), salts containing chlorite (ClO.sub.2.sup.-), chloric acid (HOClO.sub.2), salts containing chlorate (ClO.sub.3.sup.), perchloric acid (HOClO.sub.3), and salts containing perchlorate (ClO.sub.4.sup.-).
    Type: Grant
    Filed: November 6, 1992
    Date of Patent: August 3, 1993
    Assignee: Modar, Inc.
    Inventors: Kathleen C. Swallow, William R. Killilea, Glenn T. Hong, Alain L. Bourhis
  • Patent number: 5106513
    Abstract: Disclosed is a method of oxidizing materials in the presence of an oxidant and water at supercritical temperatures to obtain useful energy and/or more desirable materials. Pressures between 25 and 220 bar are employed. The use of appropriately high temperatures results in a single fluid phase reactor, rapid reaction rates, high efficiency oxidation, and precipitation of inorganic materials.
    Type: Grant
    Filed: May 28, 1991
    Date of Patent: April 21, 1992
    Assignee: Modar, Inc.
    Inventor: Glenn T. Hong
  • Patent number: 4822497
    Abstract: The present invention relates to a novel aqueous-phase oxidizer and solids separator reactor. More particularly, the invention relates to a two zone pressure vessel in which precipitates and other solids fall or are sprayed from a supercritical temperature super zone into a lower temperature sub zone. The feed material may consist of various waste products which are subsequently oxidized in the super zone of the pressure vessel. The resultant brine or slurry which is found at the lower temperature sub zone of the vessel is removed via a pipe and disposed of accordingly.
    Type: Grant
    Filed: September 22, 1987
    Date of Patent: April 18, 1989
    Assignee: Modar, Inc.
    Inventors: Glenn T. Hong, William R. Killilea, Terry B. Thomason
  • Patent number: 4543190
    Abstract: A method of oxidizing an organic material in an oxidizer includes forming a mixture of the organic material with water and a fluid including oxygen under conditions near supercritical pressure. At the inlet of the oxidizer, the mixture is caused to undergo reaction under supercritical conditions for water, characterized by a temperature of at least about 400.degree. C. and a pressure of at least about 220 atmospheres in the oxidizer.
    Type: Grant
    Filed: June 11, 1984
    Date of Patent: September 24, 1985
    Assignee: Modar, Inc.
    Inventor: Michael Modell
  • Patent number: 4338199
    Abstract: Organic materials are oxidized in supercritical water to obtain useful energy and/or resultant materials. In one embodiment, conventional fuels are oxidized with high efficiency to obtain useful energy for power generation and/or process heat. In another embodiment toxic or waste materials are converted to useful energy for power and heat and/or to non-toxic resultant materials. The method is also useful to permit use of a wide range of organic materials as a fuel in the desalination of seawater and brine or the removal of certain inorganic salts from water.
    Type: Grant
    Filed: May 8, 1980
    Date of Patent: July 6, 1982
    Assignee: Modar, Inc.
    Inventor: Michael Modell