Patents Assigned to Momentive Performance Material Inc.
  • Patent number: 9399123
    Abstract: A silicone adhesive composition including an ionic silicone and useful for healthcare applications such as wound care and drug delivery.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: July 26, 2016
    Assignee: Momentive Performance Materials Inc.
    Inventors: Anubhav Saxena, Pranav Ramchandra Joshi
  • Patent number: 9399000
    Abstract: A high silica glass composition comprising about 92 to about 99.9999 wt. % SiO2 and from about 0.0001 to about 8 wt. % of at least one dopant selected from Al2O3, CeO2, TiO2, La2O3, Y2O3, Nd2O3, other rare earth oxides, and mixtures of two or more thereof. The glass composition has a working point temperature ranging from 600 to 2,000° C. These compositions exhibit stability similar to pure fused quartz, but have a moderate working temperature to enable cost effective fabrication of pharmaceutical packages. The glass is particularly useful as a packaging material for pharmaceutical applications, such as, for example pre-filled syringes, ampoules and vials.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: July 26, 2016
    Assignee: Momentive Performance Materials, Inc.
    Inventors: Kipyung Ahn, Guangjun Xu, Martin Panchula, Samuel Conzone, Tianjun Rong, Konstantin S. Zuyev, Yen Zhou
  • Patent number: 9394443
    Abstract: The present invention provides curable compositions comprising non-Sn organo-metal catalysts that accelerate the condensation curing of moisture curable silicones/non-silicones. In particular, the present invention provides Fe(III) and Bi(III) complexes that are particularly suitable as replacements for organotin for sealant and RTV formulations. The Fe(III) and Bi(III) complexes are comparable or superior to organotin such as DBTDL and exhibit certain behavior in the presence of components that allow for tuning or adjusting the cure characteristics of the present compositions and provide good adhesion and storage stability.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: July 19, 2016
    Assignee: Momentive Performance Materials, Inc.
    Inventors: Sumi Dinkar, Mihirkumar Patel Maheshbai, Anantharaman Dhanabalan
  • Publication number: 20160200875
    Abstract: The present invention provides curable compositions comprising non-tin metal accelerators that accelerate the condensation curing of moisture-curable silicones/non-silicones. In particular, the present invention provides an accelerator comprising guanidine-containing compounds that are particularly suitable as replacements for organotin in sealant and RTV formulations. Further, the compositions employing a guanidine-containing compound is comparable or superior to organotin such as DBTDL, exhibits certain behavior in the presence of components that allow for tuning or adjusting the cure characteristics of the compositions, and provides good adhesion and storage stability.
    Type: Application
    Filed: August 18, 2014
    Publication date: July 14, 2016
    Applicant: MOMENTIVE PERFORMANCE MATERIALS INC.
    Inventors: Mihirkumar Maheshbhai PATEL, Anantharaman DHANABALAN
  • Patent number: 9387468
    Abstract: Disclosed herein are cobalt complexes containing pyridine di-imine ligands and chelating alkenyl-modified silyl ligands, and their use as hydrosilylation and/or dehydrogenative silylation and crosslinking catalysts. The cobalt complexes also exhibit adequate air stability for handling and manipulation.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: July 12, 2016
    Assignees: Momentive Performance Materials Inc., Princeton University
    Inventors: Tianning Diao, Paul J. Chirik, Aroop Kumar Roy, Kenrick Lewis, Susan Nye, Keith J. Weller, Johannes G. P. Delis, Renyuan Yu
  • Patent number: 9381506
    Abstract: Disclosed herein are cobalt terpyridine complexes containing a single ligand coordinated to the cobalt, and their use as hydrosilylation and/or dehydrogenative silylation and crosslinking catalysts. The cobalt complexes also exhibit adequate air stability for handling and manipulation.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: July 5, 2016
    Assignees: Momentive Performance Materials Inc., Princeton University
    Inventors: Tianning Diao, Paul J. Chirik, Aroop Kumar Roy, Kenrick Lewis, Keith J. Weller, Johannes G. P. Delis, Renyuan Yu
  • Patent number: 9381505
    Abstract: Disclosed herein are cobalt complexes containing terpyridine ligands and chelating alkene-modified silyl ligands, and their use as hydrosilylation and/or dehydrogenative silylation and crosslinking catalysts. The cobalt complexes also exhibit adequate air stability for handling and manipulation.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: July 5, 2016
    Assignees: Momentive Performance Materials Inc., Princeton University
    Inventors: Tianning Diao, Paul J. Chirik, Aroop Kumar Roy, Kenrick Lewis, Susan Nye, Johannes G. P. Delis, Keith J. Weller
  • Patent number: 9371340
    Abstract: Disclosed herein are cobalt complexes containing terdentate pyridine di-imine ligands and their use as efficient and selective dehydrogenative silylation, hydrosilylation, and crosslinking catalysts.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: June 21, 2016
    Assignees: Momentive Performance Materials Inc., Princeton University
    Inventors: Tianning Diao, Paul J. Chirik, Aroop Kumar Roy, Kenrick Lewis, Susan Nye, Keith J. Weller, Johannes G. P. Delis, Renyuan Yu
  • Patent number: 9371339
    Abstract: The present invention relates to processes for the synthesis of saturated and unsaturated silahydrocarbons using iron-containing or cobalt-containing catalysts. The processes of the invention can produce tetraalkylsilanes, phenyltrialkylsilanes, substituted phenyltrialkylsilanes and their mixtures, which are useful as lubricants and hydraulic fluids, as well as alkyl alkenylsilanes, phenyl alkenylsilanes and substituted phenyl alkenylsilanes and their mixtures, which are useful in the synthesis of saturated silahydrocarbons and other organofunctional silanes.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: June 21, 2016
    Assignees: Momentive Performance Materials Inc., Princeton University
    Inventors: Kenrick Martin Lewis, Crisita Carmen Hojilla Atienza, Julie L. Boyer, Paul J. Chirik, Johannes G. P. Delis, Aroop Kumar Roy
  • Patent number: 9334372
    Abstract: There is provided herein a polysiloxane having the general structural formula (I): as described herein. In addition there is provided a copolymer including the polysiloxane, a composition including such a copolymer and another polymer, a method of making the same and articles therefrom.
    Type: Grant
    Filed: February 25, 2015
    Date of Patent: May 10, 2016
    Assignee: Momentive Performance Materials Inc.
    Inventors: Anuj Mittal, Samim Alam, Raveendra Mathad, Indumathi Ramakrishnan, Roy Rojas-Wahl
  • Patent number: 9321878
    Abstract: The present invention relates to a process for preparing silylated polyurethane polymers which have increased stability under ambient condition or storage toward atmospheric moisture, in the presence of at least one of titanium-containing catalyst or zirconium-containing catalyst and to silylated polyurethane polymer compositions comprising these catalysts.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: April 26, 2016
    Assignee: Momentive Performance Materials Inc.
    Inventors: Misty Huang, Vikram Kumar, Thomas Lim, Constantine Kondos, Brendan O'Keefe
  • Patent number: 9296764
    Abstract: A composition comprising a carbocyclic group and a hydrophilic moiety attached thereto an alpha, beta-unsaturated organosilicon compound. Such compounds are useful in developing water absorbing silicone-hydrogel films. Silicone-hydrogel films provide increased oxygen to pass through a lens or other treated materials.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: March 29, 2016
    Assignee: Momentive Performance Materials Inc.
    Inventors: Shreedhar Bhat, Sandeep Naik, Anubhav Saxena, Kenrick M. Lewis
  • Patent number: 9290404
    Abstract: A method to form quartz glass ingots of ultra low contamination and defect levels by firing a high-purity quartz form as the feedstock, wherein the quartz glass ingot is free-formed on a platen rotating concentrically with the feedstock quartz article.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: March 22, 2016
    Assignee: Momentive Performance Materials Inc.
    Inventors: Michael Peter Winnen, Todd R. Springer
  • Patent number: 9290520
    Abstract: Diol derived blocked mercaptofunctional silane compositions in which the silanes comprise cyclic and bridged alkoxy groups derived from hydrocarbon-based diols and processes for their preparation are provided. Also provided are rubber compositions comprising the cyclic diol-derived blocked mercaptofunctional silanes, processes for their preparation and articles of manufacture comprising the rubber compositions, in particular, automotive tires and components thereof.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: March 22, 2016
    Assignee: Momentive Performance Materials Inc.
    Inventors: Richard W Cruse, Leda N. Gonzalez, Rodica Himmeldirk, Larry Allen Divens, Melinda Jackson, Eric Raymond Pohl, Antonio Chaves
  • Patent number: 9279193
    Abstract: A method for growing a crystalline composition, the first crystalline composition may include gallium and nitrogen. The crystalline composition may have an infrared absorption peak at about 3175 cm?1, with an absorbance per unit thickness of greater than about 0.01 cm?1. In one embodiment, the composition may have an amount of oxygen present in a concentration of less than about 3×1018 per cubic centimeter, and may be free of two-dimensional planar boundary defects in a determined volume of the first crystalline composition.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: March 8, 2016
    Assignee: Momentive Performance Materials Inc.
    Inventors: Mark Philip D'Evelyn, Kristi Jean Narang, Dong-Sil Park, Huicong Hong, Xian-An Cao, Larry Qiang Zeng
  • Patent number: 9273225
    Abstract: Disclosed herein are epoxy-based compositions that include a polysiloxane flexibilizer and amino-functional alkoxysilane, which provides flexibility, hardness and gloss to such compositions and that are useful as coatings, adhesives, sealants and composites. Also disclosed are cured compositions and substrates coated with such epoxy-based compositions.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: March 1, 2016
    Assignee: Momentive Performance Materials Inc.
    Inventors: Christian Geismann, Vikram Kumar, Constantine Kondos
  • Patent number: 9255199
    Abstract: There is provided new mono-(meth)acrylate functionalized hydrophilic silicone monomers containing a polyether with branched linking group, useful in making water absorbing silicone-hydrogel films for contact lens applications. This invention also provides homo-polymers and copolymers made from the mono-(meth)acrylate functionalized hydrophilic silicone monomers described herein. Also provided is a process for producing the monomers and polymers described herein and contact lenses produced from the same.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: February 9, 2016
    Assignee: Momentive Performance Materials Inc.
    Inventors: Kendall Louis Guyer, Kenrick Martin Lewis, Senthilkumar Umapathy, Anubhav Saxena, Yi-Feng Wang
  • Patent number: 9249165
    Abstract: The present invention is directed to a process for the synthesis of organohalosilane monomers, comprising the steps of (1) forming a slurry of cyclone fines, ultra fines and/or spent contact mass in a thermally stable solvent and reacting the agitated slurry with an organohalide of the formula R1X in the presence of an additive for a time and at a temperature sufficient to produce organohalosilane monomers having the formulae R1SiHX2, R12SiHX, R13SiX, R1SiX3, and R12SiX2; wherein R1 is a saturated or unsaturated aromatic group, a saturated or unsaturated aliphatic group, alkaryl group, or cycloaliphatic hydrocarbyl group, and X is a halogen; and (2) recovering said organohalosilane monomers.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: February 2, 2016
    Assignee: Momentive Performance Materials Inc.
    Inventors: Kenrick Martin Lewis, Yanjun Zhu, Abellard T. Mereigh, John Razzano, John David Neely
  • Patent number: 9249028
    Abstract: The present invention is directed to a method of making metal oxide and mixed metal oxide particles. The method includes treating a mixture formed from a metal source, such as metal alkoxide, a surfactant, and a first alcohol in an aqueous media at a very high metal oxide yield. The mixture is reacted using a catalyst to form metal oxide particles having a desired particle size in said mixture. By washing the particles with an aprotic solvent, the residual carbon content of the particles can be significantly reduced. The method is particularly suitable for forming silica particles. The metal oxide particles can then be heat treated to form synthetic fused metal oxides such as, for example, synthetic fused silica.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: February 2, 2016
    Assignee: MOMENTIVE PERFORMANCE MATERIALS INC.
    Inventors: Antonio L. DeVera, Martin Panchula
  • Patent number: 9243152
    Abstract: The present invention relates to stable, zero or low VOC epoxy-containing polysiloxane oligomer compositions that provide for a high degree of chemical resistance to compositions containing organic resins, while at the same time, maintaining or improving the flexibility of these organic resin-containing compositions, to processes for preparing epoxy-containing polysiloxane oligomer compositions, and to uses in coatings, sealants, adhesives, and composites containing the same.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: January 26, 2016
    Assignee: Momentive Performance Materials Inc.
    Inventors: Narayana Padmanabha Iyer, Lesley Hwang, Vikram Kumar, Christian Geismann, Constantine Kondos, Shiu-Chin Su