Patents Assigned to Montana Tech of The University of Montana
  • Patent number: 9358537
    Abstract: Oxine ligands placed on styrene base ion exchange resins selectively remove iron and gallium from acidic solutions. After loading, the oxine resin is stripped of the loaded metals and used again for further metal removal. The resins can be used for process streams, acid rock drainages, or any other iron or gallium containing solution.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: June 7, 2016
    Assignee: Montana Tech of the University of Montana
    Inventors: Paul J. Miranda, Corby G. Anderson, Edward Rosenberg
  • Patent number: 9293949
    Abstract: Electric power grid monitoring methods and apparatus are described. According to one aspect, an electric power grid signal processing method includes accessing a plurality of signals which are individually indicative of a characteristic of electromechanical energy within an electric power grid, using the plurality of signals, generating a composite signal, and analyzing the composite signal to provide information regarding an oscillatory mode within the electric power system.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: March 22, 2016
    Assignees: Montana Tech of the University of Montana, University of Wyoming
    Inventors: Dan Trudnowski, John Pierre
  • Patent number: 9244130
    Abstract: Real-time battery impedance spectrum is acquired using a one-time record. Fast Summation Transformation (FST) is a parallel method of acquiring a real-time battery impedance spectrum using a one-time record that enables battery diagnostics. An excitation current to a battery is a sum of equal amplitude sine waves of frequencies that are octave harmonics spread over a range of interest. A sample frequency is also octave and harmonically related to all frequencies in the sum. A time profile of this sampled signal has a duration that is a few periods of the lowest frequency. A voltage response of the battery, average deleted, is an impedance of the battery in a time domain. Since the excitation frequencies are known and octave and harmonically related, a simple algorithm, FST, processes the time profile by rectifying relative to sine and cosine of each frequency. Another algorithm yields real and imaginary components for each frequency.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: January 26, 2016
    Assignees: Battelle Energy Alliance, LLC, Qualtech Systems, Inc., Montana Tech of the University of Montana
    Inventors: John L. Morrison, William H. Morrison, Jon P. Christophersen, Chester G. Motloch
  • Patent number: 8868363
    Abstract: Electrochemical Impedance Spectrum data are used to predict pulse performance of an energy storage device. The impedance spectrum may be obtained in-situ. A simulation waveform includes a pulse wave with a period greater than or equal to the lowest frequency used in the impedance measurement. Fourier series coefficients of the pulse train can be obtained. The number of harmonic constituents in the Fourier series are selected so as to appropriately resolve the response, but the maximum frequency should be less than or equal to the highest frequency used in the impedance measurement. Using a current pulse as an example, the Fourier coefficients of the pulse are multiplied by the impedance spectrum at corresponding frequencies to obtain Fourier coefficients of the voltage response to the desired pulse. The Fourier coefficients of the response are then summed and reassembled to obtain the overall time domain estimate of the voltage using the Fourier series analysis.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: October 21, 2014
    Assignees: Battelle Energy Alliance, LLC, Qualtech Systems, Inc., Montana Tech of the University of Montana
    Inventors: John L. Morrison, William H. Morrison, Jon P. Christophersen, Chester G. Motloch
  • Patent number: 8535528
    Abstract: Oxine ligands placed on styrene base ion exchange resins selectively remove iron and gallium from acidic solutions. After loading, the oxine resin is stripped of the loaded metals and used again for further metal removal. The resins can be used for process streams, acid rock drainages, or any other iron or gallium containing solution.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: September 17, 2013
    Assignee: Montana Tech of The University Of Montana
    Inventors: Paul J. Miranda, Corby G. Anderson, Edward Rosenberg
  • Patent number: 8150643
    Abstract: Real-time battery impedance spectrum is acquired using a one-time record. Fast Summation Transformation (FST) is a parallel method of acquiring a real-time battery impedance spectrum using a one-time record that enables battery diagnostics. An excitation current to a battery is a sum of equal amplitude sine waves of frequencies that are octave harmonics spread over a range of interest. A sample frequency is also octave and harmonically related to all frequencies in the sum. The time profile of this signal has a duration that is a few periods of the lowest frequency. The voltage response of the battery, average deleted, is the impedance of the battery in the time domain. Since the excitation frequencies are known and octave and harmonically related, a simple algorithm, FST, processes the time record by rectifying relative to the sine and cosine of each frequency. Another algorithm yields real and imaginary components for each frequency.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: April 3, 2012
    Assignees: Battelle Energy Alliance, LLC, Montana Tech of the University of Montana, Qualtech Systems, Inc.
    Inventors: John L. Morrison, William H. Morrison, Jon P. Christophersen
  • Patent number: 7395163
    Abstract: Real time battery impedance spectrum is acquired using one time record, Compensated Synchronous Detection (CSD). This parallel method enables battery diagnostics. The excitation current to a test battery is a sum of equal amplitude sin waves of a few frequencies spread over range of interest. The time profile of this signal has duration that is a few periods of the lowest frequency. The voltage response of the battery, average deleted, is the impedance of the battery in the time domain. Since the excitation frequencies are known, synchronous detection processes the time record and each component, both magnitude and phase, is obtained. For compensation, the components, except the one of interest, are reassembled in the time domain. The resulting signal is subtracted from the original signal and the component of interest is synchronously detected. This process is repeated for each component.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: July 1, 2008
    Assignee: Montana Tech of the University of Montana
    Inventors: John L. Morrison, William H. Morrison
  • Patent number: 7314507
    Abstract: A metallic filter effectively removes mercury vapor from gas streams. The filter captures the mercury which then can be released and collected as product. The metallic filter is a copper mesh sponge plated with a six micrometer thickness of gold. The filter removes up to 90% of mercury vapor from a mercury contaminated gas stream.
    Type: Grant
    Filed: November 19, 2004
    Date of Patent: January 1, 2008
    Assignee: Montana Tech of The University of Montana
    Inventor: Kumar Ganesan