Patents Assigned to Moog Inc.
  • Patent number: 6763920
    Abstract: A bidirectional self-contained end-of stroke snubbing device (20) includes a housing (21), a rod (22) movable relative to the housing, a single fluid-filled variable-volume chamber (23) communicating with a fluid sump (24) through an orifice (65), and a lost-motion mechanism for selectively reducing the volume of the chamber proximate either end of the stroke of the rod-like member. The mechanism will force fluid from the chamber through the orifice to decelerate and cushion movement of the rod-like member relative to the housing proximate either end of its stroke.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: July 20, 2004
    Assignee: Moog Inc.
    Inventor: Luke G. Finley
  • Patent number: 6726147
    Abstract: The improved multi-function actuator (20) broadly includes; a first mechanism (21) capable of bi-directional displacement; a motor (22) operatively arranged to selectively displace the first mechanism through a first displacement range; a second mechanism (24) capable of uni-directional displacement from a first position to a second position; a spring (25) operatively arranged to urge the second mechanism to move from the first position to the second position; a release mechanism (26) operatively arranged to release the spring when the first mechanism is moved beyond the first displacement range; a third mechanism (27) capable of bi-directional displacement; and a clutch (28) operated by the release of the spring to selectively disconnect the motor from the first mechanism and to selectively connect the motor to the third mechanism; whereby the motor may be operated to selectively control either the first mechanism or the third mechanism.
    Type: Grant
    Filed: May 15, 2003
    Date of Patent: April 27, 2004
    Assignee: Moog Inc.
    Inventors: Richard J. Perini, James K. Riedel, Michael D. Wantuck
  • Patent number: 6722485
    Abstract: A force-limiting rotary lock (20) for a shaft (21) mounted on a housing (22) for rotational and axial movement relative thereto, broadly includes a lug member (28) provided on the shaft, and a pawl (51) mounted on the housing. The pawl is movable relative to the housing between first and second positions. The pawl is operatively arranged to engage the lug when the pawl is in its first position (shown in FIG. 3) to prevent further rotation of the shaft in one angular direction, and to be disengaged from the lug when the pawl is in its second position (shown in FIG. 2) to permit rotation of the shaft in either angular direction. A cam (25) is mounted on the shaft, and a follower (49) is mounted on the housing for selectively moving the pawl between the first and second positions when the shaft is axially displaced from its predetermined position.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: April 20, 2004
    Assignee: Moog Inc.
    Inventors: Seth E. Gitnes, William H. House, Kenneth K. Nakashima, Eric A. Polcuch
  • Publication number: 20040065522
    Abstract: A force-limiting rotary lock (20) for a shaft (21) mounted on a housing (22) for rotational and axial movement relative thereto, broadly includes a lug member (28) provided on the shaft, and a pawl (51) mounted on the housing. The pawl is movable relative to the housing between first and second positions. The pawl is operatively arranged to engage the lug when the pawl is in its first position (shown in FIG. 3) to prevent further rotation of the shaft in one angular direction, and to be disengaged from the lug when the pawl is in its second position (shown in FIG. 2) to permit rotation of the shaft in either angular direction. A cam (25) is mounted on the shaft, and a follower (49) is mounted on the housing for selectively moving the pawl between the first and second positions when the shaft is axially displaced from its predetermined position.
    Type: Application
    Filed: October 8, 2002
    Publication date: April 8, 2004
    Applicant: Moog Inc.
    Inventors: Seth E. Gitnes, William H. House, Kenneth K. Nakashima, Eric A. Polcuch
  • Publication number: 20040053739
    Abstract: A compound differential planetary gear assembly (50) includes a sun gear (52), a plurality of planet gears (53) engaging the sun gear, a plurality of first ring gears (54), and a plurality of second ring gears (55). Each of the second ring gears has a number of teeth that is different from the number of teeth of the first ring gears. The first and second ring gears are arranged alternately in an axial stack. Each planet gear has a constant gear-tooth cross-section along the length of the stack, with its gear teeth in meshing engagement with the teeth of the first and second ring gears. Loads transmitted between the first and second ring gears and the planets act in alternate directions along the length of the stack.
    Type: Application
    Filed: September 13, 2002
    Publication date: March 18, 2004
    Applicant: Moog Inc.
    Inventor: Lowell V. Larson
  • Patent number: 6692399
    Abstract: A differential coupling (20) has a body (21), a rotary input member (22), and two rotary output shafts (23, 24). The algebraic sum of the angular displacements of the output shafts is proportional to the rotation of the input member. The improvement includes mechanical means (39), such as a planetary gear (42), for sensing a torque differential between the output shafts, and a brake (38) mounted on the body and operatively arranged to selectively brake rotation of the input member, or both output members, when the difference between the torques on the outputs exceeds a predetermined first value.
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: February 17, 2004
    Assignee: Moog Inc.
    Inventors: Lowell V. Larson, Mark A. Mourani, Eric A. Polcuch
  • Patent number: 6679102
    Abstract: Apparatus (20) for testing the extent of contaminants in a fluid during a test period, comprises: a source (Ps) of pressurized fluid to be tested; a fluid sump (R); a first flow restriction (R1) adapted to be supplied with fluid flow from the source, the first flow restriction being configured as an annular clearance between a first land (24) and a first bore (22) and being sized and arranged so as to be progressively occluded by contaminants in the fluid flow during said test period; a second flow restriction (R2) arranged between the first flow restriction and said sump, the second flow restriction being configured as an annular clearance between a second land (25) and a second bore (22), the second flow restriction being substantially the same dimensionally as the first flow restriction so that the second flow restriction will not be occluded by contaminants passing through the first flow restriction and the pressure drops across each of the flow restrictions will be substantially equal at the beginning of
    Type: Grant
    Filed: July 22, 2002
    Date of Patent: January 20, 2004
    Assignee: Moog Inc.
    Inventor: Michael Charles Baker
  • Publication number: 20040000455
    Abstract: A bidirectional self-contained end-of stroke snubbing device (20) includes a housing (21), a rod (22) movable relative to the housing, a single fluid-filled variable-volume chamber (23) communicating with a fluid sump (24) through an orifice (65), and a lost-motion mechanism for selectively reducing the volume of the chamber proximate either end of the stroke of the rod-like member. The mechanism will force fluid from the chamber through the orifice to decelerate and cushion movement of the rod-like member relative to the housing proximate either end of its stroke.
    Type: Application
    Filed: June 28, 2002
    Publication date: January 1, 2004
    Applicant: Moog Inc.
    Inventor: Luke G. Finley
  • Publication number: 20030177757
    Abstract: A propellant supply device (10) is provided for a vehicle (11) having a main propulsion motor (12) and having an attitude control system (11) including a plurality of thrusters (14A, 14B, 14C, . . . , 14F). The improved device comprises: a pressure vessel (15); first and second movable walls (20, 21) operatively arranged within the pressure vessel and dividing the interior space therewithin into three separate sealed chambers (22, 23, 24) from each of which fluid may be supplied; a first fluid (e.g., a first bipropellant)in one of the chambers; a second fluid (e.g., a second bipropellant) in a second of the chambers; and a third fluid (e.g., ammonia) in a third of the chambers, the third fluid being a volatile liquid having a liquid phase and a gaseous phase, and wherein all three chambers are pressurized to the vapor pressure of the third fluid.
    Type: Application
    Filed: March 19, 2002
    Publication date: September 25, 2003
    Applicant: Moog Inc.
    Inventor: Robert H. Reinicke
  • Publication number: 20030129059
    Abstract: A mechanism (16) for controlling independently the pitch of a plurality of blades (15A, 15B, 15C) of a wind turbine (10) includes: a hub (11) rotatable about an axis (x-x) relative to a nacelle (12); a plurality of blades mounted on the hub for rotation therewith about the hub axis, each blade having a shaft (21) and being mounted on the hub for rotation about its axis of elongation; a plurality of motors (34) mounted on the nacelle, each motor having an output shaft (35) and being associated with a respective one of the blades; and a coupling mechanism (37) operatively interposed between each motor and its associated blade for selectively rotating such blade about its axis to vary the pitch of the associated blade relative to the hub axis. The pitch of each blade may be controlled independently of the pitch of the others.
    Type: Application
    Filed: January 4, 2002
    Publication date: July 10, 2003
    Applicant: Moog Inc.
    Inventor: Goran Nord
  • Publication number: 20030114265
    Abstract: A differential coupling (20) has a body (21), a rotary input member (22), and two rotary output shafts (23, 24). The algebraic sum of the angular displacements of the output shafts is proportional to the rotation of the input member. The improvement includes mechanical means (39), such as a planetary gear (42), for sensing a torque differential between the output shafts, and a brake (38) mounted on the body and operatively arranged to selectively brake rotation of the input member, or both output members, when the difference between the torques on the outputs exceeds a predetermined first value.
    Type: Application
    Filed: December 19, 2001
    Publication date: June 19, 2003
    Applicant: Moog Inc.
    Inventors: Lowell V. Larson, Mark A. Mourani, Eric A. Polcuch
  • Patent number: 6549856
    Abstract: The invention provides an improvement in apparatus (20) for testing the level of contaminants in a fluid during a test period. The apparatus has a source of pressurized fluid (Ps) to be tested; a fluid sump (R); and a test passage (48) which is substantially free of occluding contaminants at the beginning of the test period and which is adapted to be supplied with a flow of fluid from the source. The passage is so configured and arranged as to be progressively occluded by contaminants in the fluid flow. The apparatus also includes a device (23) defining a variable-volume chamber (47). The volume of said chamber is variable between a minimum value and a maximum value.
    Type: Grant
    Filed: July 20, 2001
    Date of Patent: April 15, 2003
    Assignee: Moog Inc.
    Inventor: Michael Charles Baker
  • Patent number: 6477835
    Abstract: An improved device (10) for moving a load (11) rotationally and/or axially relative to a body (12) broadly comprises: a body; a motor (13) mounted on the body and having an output shaft (14) operatively arranged to move the load rotationally relative to the body; a piston (16) movably mounted on the body and defining therewith a variable volume first chamber (19), the piston being operatively arranged to move the load axially relative to the body; an accumulator (23) charged to a predetermined pressure; a fluid in the first chamber and accumulator; a pump (26) driven by the motor, the pump being operatively arranged to displace fluid from the first chamber to the accumulator; and a valve (28) operatively arranged to selectively permit pressurized fluid in the accumulator to flow into the first chamber to move the piston and load in one direction axially relative to the body.
    Type: Grant
    Filed: August 29, 2001
    Date of Patent: November 12, 2002
    Assignee: Moog Inc.
    Inventor: David Geiger
  • Patent number: 6471028
    Abstract: A torque-limiting module (20) is adapted to be mounted on a body (21) at any of a plurality of locations. Each location has a particular mounting geometry that mandates the relative position and orientation of the module relative to the body. The body includes a housing (28) adapted to be mounted on the body, in input shaft (22), an output shaft (29), a coupling (30) between the shafts, a brake (31) arranged to act between the housing and output shaft for braking the shafts when the torque transmitted by the output shaft exceeds a predetermined value, a spring (84) urging the brake to move toward a position at which the output shaft will be released, a cam surface (25) mounted on the body at each of the locations, a cam follower (32) mounted on the module for movement along an axis and engageable with the cam surface at any location, and wherein the module has a variable characteristic, such as torque, that is settable as a function of the position of the cam follower relative to the module.
    Type: Grant
    Filed: September 6, 2000
    Date of Patent: October 29, 2002
    Assignee: Moog Inc.
    Inventor: Lowell Van Lund Larson
  • Patent number: 6467363
    Abstract: The present invention provides an improved standby locking mechanism (20) that is adapted to be used with a ball screw actuator. The actuator has a rotatable screw shaft (21) and has a primary nut (22) mounted on a movable member (23) and threadedly engaging the screw shaft. The standby locking mechanism (20) is also mounted on the member (23) and is operatively arranged to prevent further axial or rotative movement of the screw shaft in the event of a failure of the primary nut. The standby locking mechanism includes a sensing mechanism (30) for sensing a failure of the primary nut, and locking mechanisms (29L, 29R) responsive to the sensing mechanism for selectively locking the screw shaft to the member upon a sensed failure of the primary nut.
    Type: Grant
    Filed: February 7, 2001
    Date of Patent: October 22, 2002
    Assignee: Moog Inc.
    Inventors: David J. Manzanares, Scott A. Lee
  • Patent number: 6446432
    Abstract: A redundant control actuation system (100) provides hydraulic logic cross-coupling between physically-separate servoactuators (101A, 101B). Each servoactuator has a control valve (102A, 102B) arranged to provide a hydraulic output in response to a control signal. Each actuator also has a hydraulic actuator (106A, 106B) arranged to move a load in response to the hydraulic output from its associated control valve. Logic valve means (103A, 104A, 105A, 103B, 104B, 105B) are operatively associated with the control valves (102A, 102B) and actuators (106A, 106B). Each logic valve means is supplied with hydraulic and electrical input signals.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: September 10, 2002
    Assignee: Moog Inc.
    Inventor: David J. Flavell
  • Publication number: 20020121086
    Abstract: A redundant control actuation system (100) provides hydraulic logic cross-coupling between physically-separate servoactuators (101A, 101B). Each servoactuator has a control valve (102A, 102B) arranged to provide a hydraulic output in response to a control signal. Each actuator also has a hydraulic actuator (106A, 106B) arranged to move a load in response to the hydraulic output from its associated control valve. Logic valve means (103A, 104A, 105A, 103B, 104B, 105B) are operatively associated with the control valves (102A, 102B) and actuators (106A, 106B). Each logic valve means is supplied with hydraulic and electrical input signals.
    Type: Application
    Filed: December 13, 2000
    Publication date: September 5, 2002
    Applicant: Moog Inc.
    Inventor: David J. Flavell
  • Publication number: 20020104394
    Abstract: The present invention provides an improved standby locking mechanism (20) that is adapted to be used with a ball screw actuator. The actuator has a rotatable screw shaft (21) and has a primary nut (22) mounted on a movable member (23) and threadedly engaging the screw shaft. The standby locking mechanism (20) is also mounted on the member (23) and is operatively arranged to prevent further axial or rotative movement of the screw shaft in the event of a failure of the primary nut. The standby locking mechanism includes a sensing mechanism (30) for sensing a failure of the primary nut, and locking mechanisms (29L, 29R) responsive to the sensing mechanism for selectively locking the screw shaft to the member upon a sensed failure of the primary nut.
    Type: Application
    Filed: February 7, 2001
    Publication date: August 8, 2002
    Applicant: Moog Inc.
    Inventors: David J. Manzanares, Scott A. Lee
  • Patent number: 6424070
    Abstract: The invention is directed to an improved limited torque motor (15). In the preferred embodiment, the motor comprises a magnetized rotor (16) mounted for rotational movement relative to a stator (18), the rotor and stator being elongated about an axis x-x, and the stator having coils (19) adapted to be selectively energized by a current to exert a torque on the rotor, and the stator having a centering magnetic configuration (20) at a first axial location (21) and arranged to produce a torque on the rotor as a function of rotor angular displacement (A), and the stator having a driving magnetic configuration (23) at a second axial location (24) and arranged to produce a torque on the rotor as a function of the current. The stator may comprise multiple radial pole pieces (35) and the coil may be wrapped around each of the pole pieces. The centering magnetic configuration may have less pole-pieces than the driving magnetic configuration. The rotor may have a constant magnetic configuration along its axis.
    Type: Grant
    Filed: August 14, 2000
    Date of Patent: July 23, 2002
    Assignee: Moog Inc.
    Inventor: Dominic Spano
  • Publication number: 20020053205
    Abstract: The present invention provides an actuator (20) for selectively displacing an output member (33) against an opposing load (L) in response to the output (24) of a motor (23). The actuator includes a first transmission mechanism (50) for displacing the output member relative to the motor at a first nominal ratio with respect to the motor output; a second transmission mechanism (60) for displacing the output member relative to the motor at a nominal second ratio with respect to the motor output; a selector (34, 39) for coupling the motor output to the output member only through the first transmission mechanism (50) when the load is less than a predetermined value, and for coupling the motor output to the output member through the first and second transmission mechanisms (50, 60) when the load is greater than the predetermined value. The force exerted by the output member on the load is the sum of the forces transmitted through the first and second transmission mechanisms.
    Type: Application
    Filed: June 19, 2001
    Publication date: May 9, 2002
    Applicant: Moog Inc.
    Inventors: David Geiger, Thomas H. Czeppel