Abstract: The disclosure relates to an electronic atomizing device and an atomizer and a liquid injection structure thereof. The liquid injection structure includes an outer pipe provided with an exhaust port and a liquid injection assembly including a sleeve pipe disposed in the outer pipe and a liquid injection pipe disposed in the sleeve pipe. The liquid injection pipe is provided with a liquid injection port, and is axially movable relative to the sleeve pipe between a first position where the sleeve pipe seals the liquid injection port and a second position where the seal of the liquid injection port by the sleeve pipe is released. The sleeve pipe is axially movable relative to the outer pipe between a third position where the sleeve pipe seals the exhaust port and a fourth position where the seal of the exhaust port by the sleeve pipe is released.
Abstract: The disclosure relates to an electronic atomizing device and an atomizer and a liquid injection structure thereof. The liquid injection structure includes an outer pipe provided with an exhaust port and a liquid injection assembly including a sleeve pipe disposed in the outer pipe and a liquid injection pipe disposed in the sleeve pipe. The liquid injection pipe is provided with a liquid injection port, and is axially movable relative to the sleeve pipe between a first position where the sleeve pipe seals the liquid injection port and a second position where the seal of the liquid injection port by the sleeve pipe is released. The sleeve pipe is axially movable relative to the outer pipe between a third position where the sleeve pipe seals the exhaust port and a fourth position where the seal of the exhaust port by the sleeve pipe is released.
Abstract: A novel rapid thermal process (RTP) reactor processes a multiplicity of wafers or a single large wafer, e.g., 200 mm (8 inches), 250 mm (10 inches), 300 mm (12 inches) diameter wafers, using either a single or dual heat source. The wafers or wafer are mounted on a rotatable susceptor supported by a susceptor support. A susceptor position control rotates the wafers during processing and raises and lowers the susceptor to various positions for loading and processing of wafers. A heat controller controls either a single heat source or a dual heat source that heats the wafers to a substantially uniform temperature during processing. A gas flow controller regulates flow of gases into the reaction chamber. Instead of the second heat source, a passive heat distribution is used, in one embodiment, to achieve a substantially uniform temperature throughout the wafers. Further, a novel susceptor is used that includes a silicon carbide cloth enclosed in quartz.
Abstract: A non-intrusive acoustic sensor system for detecting and displaying the location of the level of a liquid in a tank uses a piezoelectric transceiver mounted to a bottom exterior location on the tank. The transceiver is an element of a driving and signal processing circuit which also includes a readout device for displaying liquid level location in selected terms. The system circuitry includes a microprocessor programmed to enable the velocity of sound in a liquid in the tank to be determined by the system at the site of use from a single distance measurement descriptive of the usage situation. The system automatically selects and uses the transceiver acoustic emission frequency which is best for the tank and liquid combination of interest at any time. The system, in a dual-transceiver configuration described, determines and uses speed of sound in the liquid as it in fact exists at any time.