Abstract: Absorbent, coherent, flexible structures in the form of fibrous webs and porous sponges comprising water-insoluble, ring oxidized cellulosic bases consisting of water-insoluble cellulose ethers, cellulose mixed ethers ring oxidized forms of these cellulose, cellulose ether mixed esters and mixtures of the bases. The cellulose bases have a DS of between about 0.05 and about 0.35. Upon application of the structures to the body and wet with aqueous body liquids, sharp edges and protruding fibers and fibrils or hairs become highly swollen or may dissolve thereby eliminating irritation. The ring oxidized forms of the cellulose bases contain between about 2% and about 52% added carboxyl groups. The structures may have hemostatic properties and the structure may include uniformly dispersed therein chitin and/or starch derivatives or contain starch or gelatin compounds to enhance the hemostatic efficacy.
Abstract: Polymeric materials are combined with modified heat exfoliated hydrated magnesium aluminosilicates. The aluminosilicates are treated with aqueous acidic solutions and subjected to controlled agitation to convert highly porous concertina-shaped granular hydrated magnesium aluminosilicates into groups of electrolyte insensitive platelets. Water slurries of the groups of platelets when dried form coherent, continuous sheets which when mechanically disintegrated may be reslurried in water. The modified heat exfoliated magnesium aluminosilicates are adapted for use in fire retardant, loose fill cellulose insulation, paper and pulp products, synthetic polymeric materials, coatings such as fire retardant acoustic coatings, dog foods, defoliants and the like.
Abstract: Absorbent, coherent, flexible structures in the form of fibrous webs and porous sponges comprising cellulose derivatives having a DS of between about 0.05 and about 0.35 whereby upon application to the body and wet with aqueous body liquids, the protruding fibers and fibrils or hairs become highly swollen or may dissolve thereby eliminating irritation. The derivative may be such as to impart hemostatic properties and the structure may include uniformly dispersed therein chitin and/or starch derivatives to enhance the hemostatic efficacy. The structures may include water-soluble agents which function as dry binders but when the structure is wet with aqueous body liquids, the agents dissolve and become leached from the structures.
Abstract: Heat exfoliated hydrated magnesium aluminosilicates are treated with aqueous acidic solutions and subjected to controlled agitation to convert highly porous concertina-shaped granular hydrated magnesium aluminosilicates into groups of electrolyte insensitive platelets. Water slurries of the groups of platelets when dried form coherent, continuous sheets which when mechanically disintegrated may be reslurried in water. The modified magnesium aluminosilicates are adapted for use in fire retardant, loose fill cellulose insulation, paper and pulp products, coatings such as fire retardant, acoustic coatings, dog foods, defoliates and the like.
Abstract: Readily hydratable cellulose products prepared by acid treatment of highly fibrillated filbrillatable cellulose precursor such as wood pulps. Highly flocculent slurries are formed when the products are mixed in water. The slurries exhibit slow settling rates and the material gradually settles, after prolonged standing, into a highly flocculent, uncompacted mass below a layer of crystal clear aqueous medium.