Abstract: A multi-focus x-ray source (MFXS) for a multiple inverse fan beam x-ray diffraction imaging (MIFB XDI) system. The MFXS includes a plurality of focus points (N) defined along a length of the MFXS collinear with the y-axis. The MFXS is configured to generate the plurality of primary beams, and at least M coherent x-ray scatter detectors are configured to detect coherent scatter rays from the primary beams as the primary beams propagate through a section of the object positioned within the examination area when a spacing P between adjacent coherent x-ray scatter detectors satisfies the equation: P = W s · V M · U , where Ws is a lateral extent of the plurality of focus points, U is a distance from the y-axis to a top surface of the examination area, and V is a distance from the top surface to the line at the coordinate X=L.
Abstract: A passenger inspection system includes a metal detection sensor integrated with a quadrupole resonance sensor and configured to detect weapons and/or explosives that may be present proximate the feet and/or lower legs of a person. Additionally, a weapons detection sensor may include one or more pairs of transmit coils and receive coils that are vertically mounted to the interior sidewalls of the passenger inspection system and configured to detect symmetrical and nonsymmetrical threats present on a portion of a person's legs. Methods for operating embodiments of the passenger inspection system are also disclosed.
Abstract: A technique is provided for examining a subject. The technique includes illuminating at least a part of the subject with THz radiation and detecting THz radiation reflected and/or transmitted from the illuminated part and incident upon a detector array by measuring change in capacitance corresponding to the incident THz radiation.
Abstract: A system and method for scanning objects using a non-translational x-ray diffraction (XRD) system is disclosed. The system includes a scanning area through which an object to be scanned traverses and a distributed x-ray source having a plurality of focal spot locations. The distributed x-ray source is affixed on the scanning area and is configured to emit x-rays towards the object as a series of parallel x-ray beams. A stationary detector arrangement is affixed on another side of the scanning area generally opposite the distributed x-ray source and is configured to measure a coherent scatter spectra of the x-rays after passing through the object. A data acquisition system (DAS) is connected to the detector arrangement and is configured to measure the coherent scatter spectra, which is utilized to generate XRD data and determine a material composition of at least a portion of the object from the XRD data.
Type:
Grant
Filed:
September 10, 2008
Date of Patent:
June 22, 2010
Assignee:
Morpho Detection, Inc.
Inventors:
Peter Michael Edic, Geoffrey Harding, Bruno K. B. De Man, Helmut Rudolf Strecker
Abstract: A method for reducing an artifact within an image of a substance is described. The method includes generating the image of the substance, and constraining a measured linear attenuation coefficient of a pixel of the image based on at least one of a measured diffraction profile, a measured effective atomic number, and a measured packing fraction of the substance.
Abstract: A method of detecting particles during inspection is provided. The method includes establishing a security checkpoint including a detection system, wherein the detection system includes a chamber defining a passage and includes a plurality of jets. The method also includes passing an individual through the passage, enhancing a convection plume including particles from the individual by blowing air through at least one of the plurality of jets, and absorbing the particles in a preconcentrator including a filter encased in a frame having a high thermal conductivity. Moreover, the method includes evaporating the particles absorbed in the preconcentrator and using a detector to determine whether the particles are from at least one of an explosive material and a narcotic substance.
Type:
Grant
Filed:
March 16, 2007
Date of Patent:
May 25, 2010
Assignee:
Morpho Detection, Inc.
Inventors:
Kevin Joseph Perry, Matthew Edward Knapp
Abstract: Systems for improving a spatial resolution of an image are described. One of the systems includes an X-ray source configured to generate X-rays, a transmission detector configured to detect the X-rays to output a plurality of electrical signals, and a plate configured to improve the spatial resolution upon receiving the X-rays. The plate is configured to output a fan-beam upon receiving the X-rays.
Abstract: An inspection system including a first subsystem including a first identity verification system and a passenger screening system each configured to receive information from a passenger and store the verified information in a database, and a second subsystem including at least a second identity verification system configured to receive information from the passenger, the second subsystem configured to compare the verified identity information to the information received from the passenger at the second subsystem to verify the identity of the passenger.
Abstract: A cargo container inspection radiation detector apparatus is disclosed. The apparatus includes a support, and a plurality of area radiation detectors disposed upon the support arranged corresponding to a height of the cargo container, each area radiation detector comprising an active area defined by a matrix of pixels.
Type:
Grant
Filed:
May 31, 2007
Date of Patent:
April 27, 2010
Assignee:
Morpho Detection, Inc.
Inventors:
Clifford Bueno, Joseph Bendahan, Elizabeth Lokenberg Dixon, Clarence Lavere Gordon, III, William Robert Ross, Donald Earl Castleberry, Forrest Frank Hopkins, Douglas Albagli
Abstract: A method for developing a secondary collimator is described. The method includes orienting a plurality of collimator elements in a plane such that a gap is defined between a first collimator element and a second collimator element. The first collimator element has a first curved end, and the first curved end faces the second collimator element across the gap.
Abstract: A method for determining a type of substance is described. The method includes determining an effective atomic number of the substance based on a measured ratio of numbers of detected x-ray scatter photons in a diffraction profile.
Abstract: An inspection system positions a balancing shim to asymmetrically balance a magnetic field generated by an inductive sensor, which forms part of the inspection system. Additionally, relays and capacitors used to tune the inductive sensor to a desired resonance frequency are geometrically arranged to minimize electrical interference generated by operation of the relays and capacitors. A shielding device, which may be formed on a printed circuit board, protects a magnetic field generated by the inductive sensor from external electromagnetic interference. A slot positioned in the inductive sensor may be used to tune a resonant mode of the inductive sensor to accurately and particularly detect metallic shanks and/or other metallic objects in shoes, socks, and/or clothing.
Type:
Grant
Filed:
December 12, 2007
Date of Patent:
March 2, 2010
Assignee:
Morpho Detection, Inc.
Inventors:
Christopher Crowley, Michael Urbach, Oscar Mitchell, Kevin Derby, Adam Drew
Abstract: Disclosed herein is a method and apparatus for providing radiation shielding for non-invasive inspection systems. An embodiment of the apparatus may include a radiation shield having a plurality of slats, where each of the plurality of slats comprises a radiation attenuating material. The radiation shield may further include a support structure configured to hold the slats in a non-planar shape. An embodiment of the method may include gathering a plurality of slats, each slat comprising a radiation attenuating material. The method may further include disposing the slats to form a shielding curtain having a non-planar shape. The method may also include positioning the shielding curtain to cover an opening of a scanner.
Abstract: Apparatus and method for generating ammonia gas. In one aspect, a method for generating ammonia gas for use in an ion mobility spectrometry (IMS) system is provided. The method includes inserting a device into a space defined within the IMS system, the device including an ammonia compound. The method also includes activating to decompose and to produce the ammonia gas without producing water vapor. The method also includes emitting the ammonia gas into the IMS system.
Abstract: An imaging system includes a platform having mounted thereon a coded-aperture imaging device and positioned to receive radiation over a baseline. The imaging system includes a computer configured to acquire a plurality of far-field datasets over the baseline, the plurality of far-field datasets comprising data received via the coded-aperture imaging device. The computer is also configured to form a preliminary image based on the acquired plurality of far-field datasets, and apply an expectation maximization (EM) algorithm to the preliminary image; wherein the EM algorithm includes an ordered subset algorithm.
Type:
Grant
Filed:
December 10, 2008
Date of Patent:
February 16, 2010
Assignee:
Morpho Detection, Inc.
Inventors:
Ralph Thomas Hoctor, Scott Stephen Zelakiewicz, Evren Asma, Jeffrey Gordon, Floribertus P. M. Heukensfeldt Jansen
Abstract: A method for determining a change in position of an item of luggage, examined by a first examination system, in order to thereafter examine only a suspect region of the item of luggage in a secondary examination system.
Type:
Grant
Filed:
July 3, 2008
Date of Patent:
February 9, 2010
Assignee:
Morpho Detection, Inc.
Inventors:
Armin Uwe Schmiegel, Helmut Rudolf Strecker