Patents Assigned to MTPV Power Corporation
  • Patent number: 11264938
    Abstract: A thermophotovoltaic panel assembly including a heat sink and a plurality of thermophotovoltaic modules mounted on the heat sink. Each thermophotovoltaic module includes a photovoltaic element separated from an emitter assembly by a gap. The emitter assembly includes an emitter and applies force towards the photovoltaic element to maintain the gap. The thermophotovoltaic panel assembly may also utilize a force application layer on the emitter and be bolted in place. A housing can be used for protection and to transfer energy to the emitter. The heat sink cantilevers into the housing to define a space between the thermophotovoltaic modules and the inner surface of the housing. Preferably, the housing maintains a vacuum and, in turn, the gap is evacuated. The heat sink can be monolithic and cooled with fluid pumped therethrough. The emitter may be transparent or at least partially transmissive.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: March 1, 2022
    Assignee: MTPV POWER CORPORATION
    Inventors: Brian N. Hubert, Bin Zhang, Eric L. Brown, Timothy R. Schuyler, David Mather, Paul Greiff, Christopher W. Melanson, Bruno A. Nardelli, Shannon J. Kovar, Trace W. Cody
  • Publication number: 20210288237
    Abstract: An improved method and apparatus for thermal-to-electric conversion involving relatively hot and cold juxtaposed surfaces separated by a small vacuum gap wherein the cold surface provides an array of single charge carrier converter elements along the surface and the hot surface transfers excitation energy to the opposing cold surface across the gap through Coulomb electrostatic coupling interaction.
    Type: Application
    Filed: February 25, 2021
    Publication date: September 16, 2021
    Applicant: MTPV Power Corporation
    Inventors: Peter L. Hagelstein, Dennis M. Wu
  • Patent number: 10574175
    Abstract: A photovoltaic panel assembly including a heat sink and a plurality of photovoltaic modules mounted on the heat sink. Each photovoltaic module includes a photovoltaic element separated from an emitter assembly by a gap. The emitter assembly includes an emitter and applies force towards the photovoltaic element to maintain the gap. The photovoltaic panel assembly may also utilize a force application layer on the emitter and be bolted in place. A housing can be used for protection and to transfer energy to the emitter. The heat sink cantilevers into the housing to define a space between the photovoltaic modules and the inner surface of the housing. Preferably, the housing maintains a vacuum and, in turn, the gap is evacuated. The heat sink can be monolithic and cooled with fluid pumped therethrough. The emitter may be transparent or at least partially transmissive.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: February 25, 2020
    Assignee: MTPV POWER CORPORATION
    Inventors: Brian N. Hubert, Bin Zhang
  • Patent number: 10418502
    Abstract: The present invention relates to multi-cell devices fabricated on a common substrate that are more desirable than single cell devices, particularly in photovoltaic applications. Multi-cell devices operate with lower currents, higher output voltages, and lower internal power losses. Prior art multi-cell devices use physical isolation to achieve electrical isolation between cells. In order to fabricate a multicell device on a common substrate, the individual cells must be electrically isolated from one another. In the prior art, isolation generally required creating a physical dielectric barrier between the cells, which adds complexity and cost to the fabrication process. The disclosed invention achieves electrical isolation without physical isolation by proper orientation of interdigitated junctions such that the diffusion fields present in the interdigitated region essentially prevent the formation of a significant parasitic current which would be in opposition to the output of the device.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: September 17, 2019
    Assignee: MTPV Power Corporation
    Inventors: Eric Brown, Andrew Walsh, Jose Borrego, Paul Greiff
  • Publication number: 20170338362
    Abstract: The present invention relates to multi-cell devices fabricated on a common substrate that are more desirable than single cell devices, particularly in photovoltaic applications. Multi-cell devices operate with lower currents, higher output voltages, and lower internal power losses. Prior art multi-cell devices use physical isolation to achieve electrical isolation between cells. In order to fabricate a multicell device on a common substrate, the individual cells must be electrically isolated from one another. In the prior art, isolation generally required creating a physical dielectric barrier between the cells, which adds complexity and cost to the fabrication process. The disclosed invention achieves electrical isolation without physical isolation by proper orientation of interdigitated junctions such that the diffusion fields present in the interdigitated region essentially prevent the formation of a significant parasitic current which would be in opposition to the output of the device.
    Type: Application
    Filed: August 11, 2017
    Publication date: November 23, 2017
    Applicant: MTPV Power Corporation
    Inventors: Eric Brown, Andrew Walsh, Jose Borrego, Paul Greiff
  • Patent number: 9755095
    Abstract: The present technology relates to multi-cell devices fabricated on a common substrate that are more desirable than single cell devices, particularly in photovoltaic applications. Multi-cell devices operate with lower currents, higher output voltages, and lower internal power losses. Prior art multi-cell devices use physical isolation to achieve electrical isolation between cells. In order to fabricate a multicell device on a common substrate, the individual cells must be electrically isolated from one another. In the prior art, isolation generally required creating a physical dielectric barrier between the cells, which adds complexity and cost to the fabrication process. The disclosed technology achieves electrical isolation without physical isolation by proper orientation of interdigitated junctions such that the diffusion fields present in the interdigitated region essentially prevent the formation of a significant parasitic current which would be in opposition to the output of the device.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: September 5, 2017
    Assignee: MTPV POWER CORPORATION
    Inventors: Eric Brown, Andrew Walsh, Jose Borrego, Paul Greiff
  • Patent number: 9712105
    Abstract: A device, method and process of fabricating an interdigitated multicell thermo-photo-voltaic component that is particularly efficient for generating electrical energy from photons in the red and near-infrared spectrum received from a heat source in the near field. Where the absorbing region is germanium, the device is capable of generating electrical energy by absorbing photon energy in the greater than 0.67 electron volt range corresponding to radiation in the infrared and near-infrared spectrum. Use of germanium semiconductor material provides a good match for converting energy from a low temperature heat source. The side that is opposite the photon receiving side of the device includes metal interconnections and dielectric material which provide an excellent back surface reflector for recycling below band photons back to the emitter. Multiple cells may be fabricated and interconnected as a monolithic large scale array for improved performance.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: July 18, 2017
    Assignee: MTPV Power Corporation
    Inventors: Paul Greiff, Jose M Borrego
  • Patent number: 9647191
    Abstract: An improved method and apparatus for thermal-to-electric conversion involving relatively hot and cold juxtaposed surfaces separated by a small vacuum gap wherein the cold surface provides an array of single charge carrier converter elements along the surface and the hot surface transfers excitation energy to the opposing cold surface across the gap through Coulomb electrostatic coupling interaction.
    Type: Grant
    Filed: April 20, 2015
    Date of Patent: May 9, 2017
    Assignee: MTPV POWER CORPORATION
    Inventors: Peter L. Hagelstein, Dennis M. Wu
  • Patent number: 9349891
    Abstract: An MTPV thermophotovoltaic chip comprising a photovoltaic cell substrate, micron/sub-micron gap-spaced from a juxtaposed heat or infrared radiation-emitting substrate, with a radiation-transparent intermediate window substrate preferably compliantly adhered to the photovoltaic cell substrate and bounding the gap space therewith.
    Type: Grant
    Filed: January 20, 2014
    Date of Patent: May 24, 2016
    Assignee: MTPV Power Corporation
    Inventors: Paul Greiff, Robert DiMatteo, Eric Brown, Christopher Leitz
  • Publication number: 20150372634
    Abstract: A device, method and process of fabricating an interdigitated multicell thermo-photo-voltaic component that is particularly efficient for generating electrical energy from photons in the red and near-infrared spectrum received from a heat source in the near field. Where the absorbing region is germanium, the device is capable of generating electrical energy by absorbing photon energy in the greater than 0.67 electron volt range corresponding to radiation in the infrared and near-infrared spectrum. Use of germanium semiconductor material provides a good match for converting energy from a low temperature heat source. The side that is opposite the photon receiving side of the device includes metal interconnections and dielectric material which provide an excellent back surface reflector for recycling below band photons back to the emitter. Multiple cells may be fabricated and interconnected as a monolithic large scale array for improved performance.
    Type: Application
    Filed: June 16, 2015
    Publication date: December 24, 2015
    Applicant: MTPV POWER CORPORATION
    Inventors: Paul Greiff, Jose M. Borrego
  • Patent number: 9065006
    Abstract: A device, method and process of fabricating an interdigitated multicell thermo-photo-voltaic component that is particularly efficient for generating electrical energy from photons in the red and near-infrared spectrum received from a heat source in the near field. Where the absorbing region is germanium, the device is capable of generating electrical energy by absorbing photon energy in the greater than 0.67 electron volt range corresponding to radiation in the infrared and near-infrared spectrum. Use of germanium semiconductor material provides a good match for converting energy from a low temperature heat source. The side that is opposite the photon receiving side of the device includes metal interconnections and dielectric material which provide an excellent back surface reflector for recycling below band photons back to the emitter. Multiple cells may be fabricated and interconnected as a monolithic large scale array for improved performance.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: June 23, 2015
    Assignee: MTPV Power Corporation
    Inventors: Paul Greiff, Jose M Borrega
  • Patent number: 9035166
    Abstract: An improved method and apparatus for thermal-to-electric conversion involving relatively hot and cold juxtaposed surfaces separated by a small vacuum gap wherein the cold surface provides an array of single charge carrier converter elements along the surface and the hot surface transfers excitation energy to the opposing cold surface across the gap through Coulomb electrostatic coupling interaction.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: May 19, 2015
    Assignee: MTPV Power Corporation
    Inventors: Peter L. Hagelstein, Dennis M. Wu
  • Publication number: 20140261644
    Abstract: A method and device for maintaining a low temperature of a cold-side emitter for improving the efficiency of a sub-micron gap thermophotovoltaic cell structure. A thermophotovoltaic cell structure may comprise multiple layers compressed together by a force mechanism so that the sub-micron gap dimension is relatively constant although the layer boundaries may not be substantially flat compared to the relatively constant sub-micron dimension. The layered structure includes a hot side thermal emitter having a surface separated from a photovoltaic cell surface by a sub-micron gap having a dimension maintained by spacers. The surface of the photovoltaic cell opposite the sub-micron gap is compressibly positioned against a surface of microchannel heat sink and the surface of the microchannel heat sink opposite the photovoltaic cell is compressibly positioned against a flat metal plate layer and a compressible layer.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: MTPV POWER CORPORATION
    Inventor: Eric Brown
  • Publication number: 20140261618
    Abstract: The present invention relates to multi-cell devices fabricated on a common substrate that are more desirable than single cell devices, particularly in photovoltaic applications. Multi-cell devices operate with lower currents, higher output voltages, and lower internal power losses. Prior art multi-cell devices use physical isolation to achieve electrical isolation between cells. In order to fabricate a multicell device on a common substrate, the individual cells must be electrically isolated from one another. In the prior art, isolation generally required creating a physical dielectric barrier between the cells, which adds complexity and cost to the fabrication process. The disclosed invention achieves electrical isolation without physical isolation by proper orientation of interdigitated junctions such that the diffusion fields present in the interdigitated region essentially prevent the formation of a significant parasitic current which would be in opposition to the output of the device.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: MTPV Power Corporation
    Inventors: Eric Brown, Andrew Walsh, Jose Borrego, Paul Greiff
  • Patent number: 8822813
    Abstract: An improved submicron gap thermophotovoltaic structure and method comprising an emitter substrate with a first surface for receiving heat energy and a second surface for emitting infrared radiation across an evacuated submicron gap to a juxtaposed first surface of an infrared radiation-transparent window substrate having a high refractive index. A second surface of the infrared radiation-transparent substrate opposite the first surface is affixed to a photovoltaic cell substrate by an infrared-transparent compliant adhesive layer. Relying on the high refractive index of the infrared radiation-transparent window substrate, the low refractive index of the submicron gap and Snell's law, the infrared radiation received by the first surface of the infrared radiation-transparent window substrate is focused onto a more perpendicular path to the surface of the photovoltaic cell substrate. This results in increased electrical power output and improved efficiency by the thermophotovoltaic structure.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: September 2, 2014
    Assignee: MTPV Power Corporation
    Inventors: Paul Greiff, Robert Dimatteo, Eric Brown, Christopher Leitz
  • Patent number: 8791357
    Abstract: The present invention relates to micron-gap thermal photovoltaic (MTPV) technology for the solid-state conversion of heat to electricity. The problem is forming and then maintaining the close spacing between two bodies at a sub-micron gap in order to maintain enhanced performance. While it is possible to obtain the sub-micron gap spacing, the thermal effects on the hot and cold surfaces induce cupping, warping, or deformation of the elements resulting in variations in gap spacing thereby resulting in uncontrollable variances in the power output. A major aspect of the design is to allow for intimate contact of the emitter chips to the shell inside surface, so that there is good heat transfer. The photovoltaic cells are pushed outward against the emitter chips in order to press them against the inner wall. A high temperature thermal interface material improves the heat transfer between the shell inner surface and the emitter chip.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: July 29, 2014
    Assignee: MTPV Power Corporation
    Inventors: Eric L. Brown, Robert S. DiMatteo, Bruno A. Nardelli, Bin Peng, Xiao Li
  • Publication number: 20140137921
    Abstract: An MTPV thermophotovoltaic chip comprising a photovoltaic cell substrate, micron/sub-micron gap-spaced from a juxtaposed heat or infrared radiation-emitting substrate, with a radiation-transparent intermediate window substrate preferably compliantly adhered to the photovoltaic cell substrate and bounding the gap space therewith.
    Type: Application
    Filed: January 20, 2014
    Publication date: May 22, 2014
    Applicant: MTPV Power Corporation
    Inventors: Paul Greiff, Robert DiMatteo, Eric Brown, Christopher Leitz
  • Patent number: 8633373
    Abstract: An MTPV thermophotovoltaic chip comprising a photovoltaic cell substrate, micron/sub-micron gap-spaced from a juxtaposed heat or infrared radiation-emitting substrate, with a radiation-transparent intermediate window substrate preferably compliantly adhered to the photovoltaic cell substrate and bounding the gap space therewith.
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: January 21, 2014
    Assignee: MTPV Power Corporation
    Inventors: Paul Greiff, Robert DiMatteo, Eric Brown, Christopher Leitz
  • Patent number: 8450598
    Abstract: A near-field energy conversion method, utilizing a sub-micrometer “near-field” gap between juxtaposed infrared radiation receiver and emitter surfaces, wherein compliant membrane structures, preferably fluid-filled, are interposed in the structure for maintaining uniform gap separation. Thermally resistant gap spacers are also used to maintain uniform gap separation. Means are provided for cooling a receiver substrate structure and for conducting heat to an emitter substrate structure. The gap may also be evacuated for more effective operation.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: May 28, 2013
    Assignee: MTPV Power Corporation
    Inventors: Paul Greiff, Robert DiMatteo, Eric Brown, Christopher Leitz
  • Publication number: 20130092212
    Abstract: An improved submicron gap thermophotovoltaic structure and method comprising an emitter substrate with a first surface for receiving heat energy and a second surface for emitting infrared radiation across an evacuated submicron gap to a juxtaposed first surface of an infrared radiation-transparent window substrate having a high refractive index. A second surface of the infrared radiation-transparent substrate opposite the first surface is affixed to a photovoltaic cell substrate by an infrared-transparent compliant adhesive layer. Relying on the high refractive index of the infrared radiation-transparent window substrate, the low refractive index of the submicron gap and Snell's law, the infrared radiation received by the first surface of the infrared radiation-transparent window substrate is focused onto a more perpendicular path to the surface of the photovoltaic cell substrate. This results in increased electrical power output and improved efficiency by the thermophotovoltaic structure.
    Type: Application
    Filed: November 30, 2012
    Publication date: April 18, 2013
    Applicant: MTPV Power Corporation
    Inventor: MTPV Power Corporation