Abstract: An apparatus for depositing atomic layers coats first and second reaction layers alternately on a substrate by repeating injection of source precursor and purge gas from a showerhead with the showerhead moving forward and injection of reactant precursor and the purge gas from the showerhead with the showerhead moving backward. The precursors and purge gas injected are exhausted in real time through the showerhead. Mixing of the source and reactant precursors is prevented by the alternate injections of the source and reactant precursors. Throughput is improved by the simultaneous injections of the precursor and the purge gas. By minimizing a moving distance of the showerhead, a footprint is reduced and the apparatus can be used for large size substrates. It is also possible to deposit the atomic layers selectively on a specific selected region.
Abstract: An apparatus for depositing atomic layers comprises a substrate moving mechanism, a showerhead comprising at least one injection unit, and a showerhead reciprocating mechanism. The showerhead injects source and reactant precursors to the substrate while the substrate is transported. The number of the atomic layers deposited on the substrate can be controlled by controlling the moving speed of the substrate and the reciprocating speed of the showerhead. The invention provides an apparatus and a method with high throughput and small footprint. The invention also provides an apparatus and a method configured to deposit the atomic layers on a gas permeable substrate.