Patents Assigned to MTU Friedrichshafen GmbH
  • Patent number: 9982620
    Abstract: A method for correcting a fuel quantity injected by a fuel injection device during operation of an internal combustion engine, including: determining an air heat characteristic variable, on which an air heat stream fed to a combustion chamber of the engine functionally depends; determining an exhaust heat characteristic variable, on which an exhaust heat stream discharged from the combustion chamber functionally depends; determining a heat distribution factor, which specifies a fraction of the exhaust heat stream reduced by the air heat stream in relation to a heat stream fed with the injected fuel to the combustion chamber; calculating a fuel mass fed to the engine from the air heat characteristic variable, the exhaust heat characteristic variable and the heat distribution factor; calculating a comparison variable by comparing the calculated fuel mass with a fuel mass setpoint value and adapting actuation of the fuel injection device depending on the comparison variable.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: May 29, 2018
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Andreas Flohr, Francois Layec
  • Patent number: 9982621
    Abstract: A method for operating an internal combustion engine having a hardware structure including an engine control unit and a maintenance unit, an electronic engine identification module and an engine control program, the method having the steps: providing a computer program product via a network by which an engine identification and engine data are loaded together and are exchanged, wherein the computer program product is designed for uploading and/or downloading a maintenance software module by which the engine identification and the engine data are compiled; loading the computer program product onto a non-volatile storage medium; coupling the non-volatile storage medium to the maintenance unit of the hardware structure and executing the computer program product; exchanging the maintenance software module between the non-volatile storage medium and the maintenance unit; identifying the engine and compiling engine data by the maintenance software module and a hardware component of the hardware structure.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: May 29, 2018
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Albrecht Debelak, Andreas Schneider, Michael Wölki
  • Patent number: 9982633
    Abstract: A gas internal combustion engine, having a gas mixer, an intake section and an engine to which a fuel mixture having a charging mixture is fed. The engine is operated in the gas mode with gas as the fuel in the charging mixture. By an input mixture portion, from an earlier mixture state, of a gas/air mixture, an output mixture portion, from a later mixture state, of the gas/air mixture is determined by an intake section model. The output mixture portion is determined at an engine feed, the input mixture portion is determined over a number of intermediate states of the mixture portion in a number of assigned volumes of the intake section. The intake mixture portion of a gas/air mixture is determined at the gas mixer, and an air stream and/or gas stream is set at the gas mixer in accordance with the input mixture portion.
    Type: Grant
    Filed: January 20, 2014
    Date of Patent: May 29, 2018
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Andreas Flohr, Andreas Geller
  • Patent number: 9927159
    Abstract: A method for operating a system for a thermodynamic cycle with a multi-flow evaporator having at least two evaporator flow channels, wherein the evaporator flow channels are made to approximate each other with respect to at least one operating parameter of the individual evaporator flow channels, and/or wherein a pressure drop across the evaporator is automatically controlled.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: March 27, 2018
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Niklas Waibel, Daniel Stecher, Gerald Fast, Tim Horbach, Jens Niemeyer, Max Lorenz, Mathias Müller
  • Patent number: 9909547
    Abstract: In a quantity limiting valve for a fuel injection system of an internal combustion engine including a cylinder with an inflow region and an outflow region separated by a piston axially movably disposed in the cylinder and a flow limiting fluid flow path extending along the piston between the inflow and outflow regions wherein the piston is biased with its front surface into contact with a stop element, the contact area between the front surface and the stop surface includes between the piston and the stop element a contact structure providing for an intermediate space which is in communication with the inflow region thereby to expose the front surface of the piston to the pressure of the fluid in the inflow region.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: March 6, 2018
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Robby Gerbeth, Michael Walder, Andreas Mehr, Markus Staudt, Frank Mlicki
  • Patent number: 9909524
    Abstract: A method for operating an internal combustion engine having a motor with cylinder and an injection system having a common rail and injectors for the cylinders. Each injector has an accumulator for holding fuel from the common rail. A multiple injection of fuel is performed during each working cycle of a cylinder, including injecting a first amount in a first injection and injecting a second amount in a second injection, and determining fuel pressure for the common rail and/or the accumulator. A fuel injection amount parameter is determined for the first injection; an individual accumulator pressure and/or a common rail pressure is determined for the second injection; and a fuel injection amount parameter is determined for the second injection. The individual accumulator pressure and/or the common rail pressure are/is considered for determining the injection amount parameter of the fuel for the second injection.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: March 6, 2018
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Markus Gölz, Robby Gerbeth, Frank Mlicki, Michael Walder, Carsten Engler, Andreas Mehr, Christian Wolf
  • Patent number: 9909518
    Abstract: A method for controlling the speed of an internal combustion engine and a speed control circuit for carrying out the method. For controlling, fuel energy is used as an output variable. The control units are calculated in accordance with a stationary proportion gain which is calculated proportionally to the fuel energy and inversely proportional to the engine speed.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: March 6, 2018
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventor: Armin Dölker
  • Patent number: 9903331
    Abstract: A method for the injector-specific diagnosis of a fuel injection device of an internal combustion engine, including the following steps: detecting a pressure progression in an individual accumulator of an injector in a time-resolved manner; evaluating the detected pressure progression; determining if there is a fault state of the injection device in the region of the injector on the basis of the detected and evaluated pressure progression; and identifying the fault state on the basis of the detected and evaluated pressure progression.
    Type: Grant
    Filed: August 1, 2014
    Date of Patent: February 27, 2018
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Michael Walder, Andreas Mehr, Frank Mlicki, Alexander Bernhard, Christian Wolf
  • Patent number: 9890720
    Abstract: A method for operating an internal combustion engine, which has: an intake section and an engine with an number of cylinders and a receiver which is arranged upstream of the cylinders wherein the intake section has: a supercharging system with a compressor and a bypass for bypassing the supercharging system, and wherein the receiver is assigned an engine throttle, and the bypass is assigned a compressor bypass throttle; and a setting of the engine throttle and/or of the compressor bypass throttle is set as a function of the operation in order to influence a charge fluid. The intake section is assigned an intake section model by which at least a mass flow and/or state of the charge fluid upstream of the engine are/is determined and on the basis of a determination result the compressor bypass throttle is set as a function of the engine throttle.
    Type: Grant
    Filed: January 20, 2014
    Date of Patent: February 13, 2018
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Andreas Flohr, Andreas Geller, Alexander Bernhard
  • Patent number: 9890735
    Abstract: A method and an assembly for controlling the pressure in a high-pressure region of an injection system in an internal combustion engine. A set high pressure is compared to an actual high pressure in order to determine a control deviation, the control deviation representing an input variable of a controller. A high pressure pump is controlled by a solenoid valve and the angle at which the delivery of fuel by the at least one high-pressure pump is to start is used as a manipulated variable of the high-pressure closed-loop control system.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: February 13, 2018
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventor: Armin Dölker
  • Patent number: 9890684
    Abstract: A method and a device for operating an exhaust gas aftertreatment, wherein a diesel particulate filter is regenerated during the operation, in particular passively regenerated, wherein a corrected differential pressure is calculated from a current differential pressure across the diesel particulate filter at a current exhaust gas volumetric flow rate and with a current correction factor. The current correction factor is determined by determining a lower differential pressure in a predetermined time interval at a defined exhaust gas volumetric flow rate, in particular in a specified exhaust gas volumetric flow rate interval around the defined exhaust gas volumetric flow rate, and comparing the lower differential pressure with a specified current reference value and, depending thereon, calculating a new correction factor or retaining the previous correction factor as the current correction factor.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: February 13, 2018
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Andrea Prospero, Tim Späder, Stefan Merk
  • Patent number: 9840964
    Abstract: A supercharging unit for an internal combustion engine has a high-pressure turbine which drives a high-pressure compressor so as to perform a rotational movement about a first axis and through which exhaust gas of the internal combustion engine flows, and having a low-pressure turbine which drives a low-pressure compressor so as to perform a rotational movement about a second axis and through which exhaust gas flows. The high-pressure turbine is arranged rotationally conjointly on a first shaft, and the high-pressure compressor is arranged rotationally conjointly on a second shaft, wherein the first and the second shaft are arranged parallel to one another and are arranged offset with respect to one another, wherein the first and the second shaft are mechanically operatively connected to one another such that the high-pressure compressor can be driven by the high-pressure turbine.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: December 12, 2017
    Assignee: MTU Friedrichshafen GmbH
    Inventor: Ronald Hegner
  • Patent number: 9803535
    Abstract: The invention relates to the cooling system of an internal combustion engine (10) which comprises a combustion engine (12) having at least two cylinder banks (14, 16) and a number of exhaust gas exchangers (18, 20) identical to the number of cylinder banks, as well as a retarder connection, wherein the cooling system can be flown through by a fluid serving as coolant in a preferred flow direction and comprises a cooling system trunk section (30) and a number of cooling system branch sections identical to the number of the cylinder banks (14, 16) of the combustion engine (12), said cooling system branch sections comprising each a cylinder bank branch section (22, 24), an exhaust gas exchanger branch section (36, 38) and a combining branch section (44, 46). The invention further relates to an internal combustion engine (10) corresponding thereto.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: October 31, 2017
    Assignee: MTU Friedrichshafen GmbH
    Inventors: Felix Henssler, Jörg Andre Reitz
  • Publication number: 20170298841
    Abstract: A diesel engine, in particular a high-power diesel engine, having a variable valve train including an adjusting unit at least for adjusting a cam angle of at least one inlet valve, and a control or regulating unit having at least one operating mode which is for cold starting. The control and/or regulating unit is designed in an operational mode, to adjust the cam angle of the at least one inlet valve to ‘late’ by controlling the adjusting unit.
    Type: Application
    Filed: November 30, 2015
    Publication date: October 19, 2017
    Applicant: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Christoph LUCKAS, Wolfgang FIMML, Johannes SCHALK, Jonathan LIPP
  • Patent number: 9779218
    Abstract: In a method for a model-based determination of a temperature distribution of an exhaust gas post-treatment unit, a differentiation is made between steady operating states and non-steady operating states by taking into account the axial and the radial temperature distribution, and, on the basis of virtual segmentation of the post-treatment unit, in particular the radial heat transfer to the surroundings is taken into account in the model-based determination for steady operating states, and for non-steady operating states the heat transfer from the exhaust gas which flows axially through the post-treatment unit to the segments is taken into account by a heat transfer coefficient k.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: October 3, 2017
    Assignee: MTU Friedrichshafen GmbH
    Inventors: Marc Hehle, Ralf Müller, Jens Niemeyer, Jörg Remele, Guido Schäffner, Holger Sinzenich, Tim Späder
  • Patent number: 9752528
    Abstract: A method and an arrangement for operating an internal combustion engine. In the method, an injection start is calculated by a filter, starting from a standard injection start and at least one of the filter parameters is selected in accordance with the operating mode of the internal combustion engine.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: September 5, 2017
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventor: Armin Dölker
  • Patent number: 9732704
    Abstract: Gas engine arrangement having a gas engine, a gas rail, via which a first gas in the form of fuel gas can be supplied to at least one gas metering device of the gas engine, and a gas control section, which is designed to supply fuel gas to the gas rail via a supply path on the outflow side. A purge line is passed into the gas rail. The gas engine arrangement is designed to selectively supply fuel gas or a second gas to the purge line, and the gas engine arrangement is designed to displace gas from the gas rail and to discharge it via the supply path when the fuel gas or second gas is supplied to the purge line.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: August 15, 2017
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Jan Prunnbauer, Jörg Matthies
  • Patent number: 9726116
    Abstract: A gas mixer for mixing a first gas and a second gas, having a first, outer gas housing part, having an inlet for the first gas in a longitudinal axis and an inlet for the second gas in a transverse axis, a second, interior gas housing part set into the first gas housing part to form an annular space for a second gas, having a mixing space into which the first gas and the second gas are introduced for mixing. The first and second gas housing parts and the annular space are aligned along the longitudinal axis and the mixing space is aligned cylindrically along the longitudinal axis. A mixing device having a plurality of hollow rods is arranged in the mixing space. A hollow space of a hollow rod is in fluid communication on both sides with the annular space. The number of hollow rods extends transverse to the longitudinal axis and the transverse axis and at least one hollow rod has a plurality of openings for the second gas, so that the hollow space is in fluid communication with the cylindrical mixing space.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: August 8, 2017
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventor: Markus Raindl
  • Publication number: 20170218898
    Abstract: In a multi-fuel injector for an internal combustion engine, including a housing with a nozzle needle movably disposed therein between a closed position in which the nozzle needle blocks a discharge of fuel from a collection chamber, to which a first fuel is supplied, above the nozzle needle, a control chamber is arranged to which a high pressure second fuel is supplied which acts on the nozzle needle to bias it into a closed position, and a control valve is provided in a pressure release line extending from the control chamber for a controlled release of the second fuel from the control chamber by opening the control valve so as to relief the closing pressure on the nozzle needle in order to permit lifting of the nozzle needle from the closed position for discharging the fuel from the collection chamber.
    Type: Application
    Filed: April 13, 2017
    Publication date: August 3, 2017
    Applicant: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Joachim SCHWARTE, Samuel VOGEL, Robby GERBETH
  • Patent number: 9719452
    Abstract: A method for controlling an internal combustion engine, wherein a first engine control device generates a control signal to actuate a function of the engine. A switchover device transmits the control signal of the first control device to the engine to actuate the function of the engine. The first control device transmits a sign-of-life signal which indicates functionality of the control device to the switchover device. The first engine control device does not transmit the sign-of-life signal or transmits the signal incorrectly if a fault occurs which endangers proper actuation of the function of the engine by the first engine control device. If the sign-of-life signal of the first engine control device is not or is incorrectly received by the switchover device, the switchover device stops transmitting the control signals of the first engine control device and starts transmitting a control signal generated by a second engine control device to the engine to actuate the function of the engine.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: August 1, 2017
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Andreas Mehr, Christoph Hirschle, Jan Henker, Roger Elze