Patents Assigned to MTU ONSITE ENERGY GMBH
  • Patent number: 11079255
    Abstract: A method determines a generator system load and/or rotor angle. The generator system has a generator with a generator terminal outputting electrical power generated by the generator, a transformer and a point of common coupling, PCC, terminal. The transformer is between the generator and PCC terminals. The method includes: determining the generator field current; determining the output voltage, the output current and the power factor and/or angle of the output voltage and output current from the generator terminal, and determining the load angle of the generator system, output voltage from the generator terminal, output current from the generator terminal and the power factor and/or angle; and/or determining the output voltage, the output current and the power factor and/or angle of the output voltage and output current, and determining the rotor angle of the generator system, output voltage, output current from the PCC terminal and the power factor and/or angle.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: August 3, 2021
    Assignees: ROLLS-ROYCE plc, MTU FRIEDRICHSHAFEN GMBH, MTU ONSITE ENERGY GMBH
    Inventors: Johannes Demharter, Souvik Dasgupta, Michael Kreissl, Amit K Gupta, Vsk Murthy Balijepalli
  • Patent number: 10931217
    Abstract: A power system, including: a synchronous electrical generator having a rotor; and an angle computation unit configured to: determine a rotor angle in a steady state period of the synchronous electrical generator, determine a change in rotor angle in a transient period of the synchronous electrical generator, and estimate the rotor angle in the transient period based on the steady state rotor angle and the change in rotor angle.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: February 23, 2021
    Assignees: ROLLS-ROYCE PLC, MTU FRIEDRICHSHAFEN GMBH, MTU ONSITE ENERGY GMBH
    Inventors: Souvik Dasgupta, Johannes Demharter, Michael Kreissl, Yang Shicong, Amit K Gupta
  • Patent number: 10770997
    Abstract: A power system includes a synchronous electrical generator having a rotor driven by a shaft; a permanent magnet signaling generator, coupled to the shaft; and an angle computation unit configured to calculate a rotor angle or load angle based on a voltage from the permanent magnet signaling generator and a voltage from the synchronous electrical generator.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: September 8, 2020
    Assignees: ROLLS-ROYCE plc, MTU FRIEDRICHSHAFEN GMBH, MTU ONSITE ENERGY GMBH
    Inventors: Yang Shicong, Souvik Dasgupta, Michael Kreissl, Johannes Demharter, Amit K Gupta
  • Publication number: 20190372493
    Abstract: A power system, including: a synchronous electrical generator having a rotor; and an angle computation unit configured to: determine a rotor angle in a steady state period of the synchronous electrical generator, determine a change in rotor angle in a transient period of the synchronous electrical generator, and estimate the rotor angle in the transient period based on the steady state rotor angle and the change in rotor angle.
    Type: Application
    Filed: May 2, 2019
    Publication date: December 5, 2019
    Applicants: ROLLS-ROYCE plc, MTU FRIEDRICHSHAFEN GMBH, MTU ONSITE ENERGY GMBH
    Inventors: Souvik DASGUPTA, Johannes DEMHARTER, Michael KREISSL, Yang SHICONG, Amit K. GUPTA
  • Publication number: 20190372494
    Abstract: A power system includes a synchronous electrical generator having a rotor driven by a shaft; a permanent magnet signaling generator, coupled to the shaft; and an angle computation unit configured to calculate a rotor angle or load angle based on a voltage from the permanent magnet signaling generator and a voltage from the synchronous electrical generator.
    Type: Application
    Filed: May 2, 2019
    Publication date: December 5, 2019
    Applicants: ROLLS-ROYCE plc, MTU FRIEDRICHSHAFEN GMBH, MTU ONSITE ENERGY GMBH
    Inventors: Yang SHICONG, Souvik DASGUPTA, Michael KREISSL, Johannes DEMHARTER, Amit K. GUPTA
  • Publication number: 20190368898
    Abstract: A method determines a generator system load and/or rotor angle. The generator system has a generator with a generator terminal outputting electrical power generated by the generator, a transformer and a point of common coupling, PCC, terminal. The transformer is between the generator and PCC terminals. The method includes: determining the generator field current; determining the output voltage, the output current and the power factor and/or angle of the output voltage and output current from the generator terminal, and determining the load angle of the generator system, output voltage from the generator terminal, output current from the generator terminal and the power factor and/or angle; and/or determining the output voltage, the output current and the power factor and/or angle of the output voltage and output current, and determining the rotor angle of the generator system, output voltage, output current from the PCC terminal and the power factor and/or angle.
    Type: Application
    Filed: May 2, 2019
    Publication date: December 5, 2019
    Applicants: ROLLS-ROYCE plc, MTU FRIEDRICHSHAFEN GMBH, MTU ONSITE ENERGY GMBH
    Inventors: Johannes DEMHARTER, Souvik DASGUPTA, Michael KREISSL, Amit K. GUPTA, Vsk Murthy BALIJEPALLI
  • Publication number: 20190288624
    Abstract: There is disclosed a fault ride-through system for use in a power system comprising a synchronous generator driven by a prime mover. The fault ride-through system comprises a mechanical switch connected in parallel with a dynamic power dissipater, wherein the dynamic power dissipater comprises a solid-state switch connected in series with a braking resistor. A controller is configured to control the mechanical switch and the solid-state switch to control the current through the braking resistor, based on received data indicative of one or more operation parameters of the power system.
    Type: Application
    Filed: February 19, 2019
    Publication date: September 19, 2019
    Applicants: ROLLS-ROYCE plc, MTU FRIEDRICHSHAFEN GMBH, MTU ONSITE ENERGY GMBH
    Inventors: Amit K GUPTA, Johannes DEMHARTER, Yang SHICONG, Souvik DASGUPTA, Michael KREISSL, Abhisek UKIL
  • Patent number: 9543599
    Abstract: There is disclosed a fuel cell assembly comprising at least one horizontally arranged fuel cell stack that has numerous fuel cells, each comprising an anode, a cathode and an electrolyte situated between the anode and the cathode; combustible gas supply means for supplying combustible gas to the anodes of the fuel cells; anode gas withdrawal means for withdrawing the anode exhaust gas from the anodes; cathode gas supply means for supplying cathode gas to the cathodes of the fuel cells; cathode gas withdrawal means for withdrawing the cathode exhaust gas from the fuel cells; and recirculation means for recirculating at least one part of the anode exhaust gas and/or the cathode exhaust gas to cathodes of the fuel cells.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: January 10, 2017
    Assignee: MTU Onsite Energy GmbH
    Inventors: Uwe Burmeister, Johann Huber, Norbert Ottmann, Stefan-Ibrahim Peterhans, Wolfgang Wagner, Christoph Weiser
  • Patent number: 9267483
    Abstract: The disclosure relates to a method for operating a spark ignition gas engine, with fuel gas in the form of biogas by setting an ignition time (ZZP) of the spark ignition gas engine. The method comprises to following steps: mixing of air and fuel gas to form a combustible gas mixture in a mixing arrangement, feeding in and igniting the combustible gas mixture in the combustion chamber while setting an ignition time (ZZP) and burning the combustible gas mixture while discharging exhaust gas from the combustion chamber. The method further comprises the steps of: detection of an exhaust gas temperature (T_AG) of the exhaust gas, predefining at least one reactor position (LRV) of a component of the mixing arrangement, setting the ignition time (ZZP) of the spark ignition gas engine as a function of the exhaust gas temperature (T_AG) and the reactor position (LRV). The reactor position (LRV) is predefined as a manipulated variable by a mixture controller.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: February 23, 2016
    Assignee: MTU ONSITE ENERGY GMBH
    Inventors: Markus Diehl, Tobias Lindermayr
  • Publication number: 20130291834
    Abstract: The disclosure relates to a method for operating a spark ignition gas engine, with fuel gas in the form of biogas by setting an ignition time (ZZP) of the spark ignition gas engine. The method comprises to following steps: mixing of air and fuel gas to form a combustible gas mixture in a mixing arrangement, feeding in and igniting the combustible gas mixture in the combustion chamber while setting an ignition time (ZZP) and burning the combustible gas mixture while discharging exhaust gas from the combustion chamber. The method further comprises the steps of: detection of an exhaust gas temperature (T_AG) of the exhaust gas, predefining at least one reactor position (LRV) of a component of the mixing arrangement, setting the ignition time (ZZP) of the spark ignition gas engine as a function of the exhaust gas temperature (T_AG) and the reactor position (LRV). The reactor position (LRV) is predefined as a manipulated variable by a mixture controller.
    Type: Application
    Filed: November 14, 2011
    Publication date: November 7, 2013
    Applicant: MTU Onsite Energy GmbH
    Inventors: Markus Diehl, Tobias Lindermayr
  • Publication number: 20110269037
    Abstract: There is disclosed a fuel cell assembly comprising at least one horizontally arranged fuel cell stack that has numerous fuel cells, each comprising an anode, a cathode and an electrolyte situated between the anode and the cathode; combustible gas supply means for supplying combustible gas to the anodes of the fuel cells; anode gas withdrawal means for withdrawing the anode exhaust gas from the anodes; cathode gas supply means for supplying cathode gas to the cathodes of the fuel cells; cathode gas withdrawal means for withdrawing the cathode exhaust gas from the fuel cells; and recirculation means for recirculating at least one part of the anode exhaust gas and/or the cathode exhaust gas to cathodes of the fuel cells.
    Type: Application
    Filed: September 16, 2009
    Publication date: November 3, 2011
    Applicant: MTU ONSITE ENERGY GMBH
    Inventors: Uwe Burmeister, Johann Huber, Norbert Ottmann, Stefan-Ibrahim Peterhans, Wolfgang Wagner, Christoph Weiser
  • Publication number: 20110177433
    Abstract: The disclosure relates to a method for the production of an anode for a molten carbonate fuel cell, wherein a mixture is created, containing at least one base metal and at least one auxiliary agent, and wherein the mixture is applied onto a carrier structure. The disclosure provides that a mixture is used, which contains at least one auxiliary agent in the form of a metal oxide and/or metal hydroxide, and which contains at least one alkali metal compound. The disclosure further relates to an anode that can be produced according to said method.
    Type: Application
    Filed: July 29, 2009
    Publication date: July 21, 2011
    Applicant: MTU Onsite Energy GmbH
    Inventors: Marc Bednarz, Juergen Haug, Birgit Hilke, Christoph Riether
  • Publication number: 20110171544
    Abstract: There is disclosed a fuel cell assembly comprising at least one horizontally arranged fuel cell stack that has numerous fuel cells, each comprising an anode, a cathode and an electrolyte situated between the anode and the cathode; combustible gas supply means for supplying combustible gas to the anodes of the fuel cells; anode gas withdrawal means for withdrawing the anode exhaust gas from the anodes; cathode gas supply means for supplying cathode gas to the cathodes of the fuel cells; cathode gas withdrawal means for withdrawing the cathode exhaust gas from the fuel cells; and recirculation means for recirculating at least one part of the anode exhaust gas and/or the cathode exhaust gas to cathodes of the fuel cells.
    Type: Application
    Filed: September 16, 2009
    Publication date: July 14, 2011
    Applicant: MTU Onsite Energy GmbH
    Inventors: Uwe Burmeister, Johann Huber, Norbert Ottmann, Stefan Ibrahim Peterhans, Wolfgang Wagner, Christoph Weiser
  • Publication number: 20110171551
    Abstract: There is disclosed a fuel cell assembly comprising: at least one horizontally arranged fuel cell stack that has numerous fuel cells, each comprising an anode, a cathode and an electrolyte situated between the anode and the cathode; combustible gas supply means for supplying combustible gas to the anodes of the fuel cells; anode gas withdrawal means for withdrawing the anode exhaust gas from the anodes; cathode gas supply means for supplying cathode gas to the cathodes of the fuel cells; cathode gas withdrawal means for withdrawing the cathode exhaust gas from the fuel cells; and recirculation means for recirculating at least one part of the anode exhaust gas and/or the cathode exhaust gas to cathodes of the fuel cells. The fuel cell assembly according to the invention is characterised in that the assembly consists of modular sub-assemblies that are independent of one another and that communicate with one another via standardised interfaces.
    Type: Application
    Filed: September 16, 2009
    Publication date: July 14, 2011
    Applicant: MTU Onsite Energy GmbH
    Inventors: Uwe Burmeister, Johann Huber, Norbert Ottmann, Stefan-Ibrahim Peterhans, Wolfgang Wagner, Christoph Weiser
  • Publication number: 20110033771
    Abstract: The present invention relates to an electrode for a molten carbonate fuel cell, with an electrochemically active electrode layer (10, 20), which is provided with cavities (12, 22). The invention provides that the cavities (12, 22) are surrounded and delimited by particles (13, 23) resulting from at least one imaging material. The present invention also relates to a process for producing such an electrode.
    Type: Application
    Filed: August 1, 2007
    Publication date: February 10, 2011
    Applicant: MTU ONSITE ENERGY GMBH
    Inventors: Marc Bednarz, Ursula Paulus-Rodatz
  • Publication number: 20110003681
    Abstract: The present invention relates to a catalyst composition and a catalyst material which are suitable for use as a reforming catalyst in a fuel cell and are less susceptible to catalyst poisoning by alkali metals. The invention also relates to a catalyst suspension for the preparation of the catalyst composition and the catalyst material, plus a process for the preparation of the catalyst suspension and the catalyst composition. The invention is also directed towards the use of the catalyst composition or the catalyst material in a fuel cell.
    Type: Application
    Filed: February 26, 2008
    Publication date: January 6, 2011
    Applicants: SUD-CHEMIE AG, MTU ONSITE ENERGY GMBH
    Inventors: Thomas Speyer, Wolfgang Gabriel, Klaus Wanninger, Uwe Wurtenberger