Abstract: The invention relates to a brush seal, in particular for the sealing of gaps occurring in turbomachines, including a plurality of individual fibers, individual wires or bundles of individual fibers or wires, wherein, in each case, at least two individual fibers or wires, and/or at least two fiber bundles or wire bundles are braided or twisted into a fiber or wire package. In addition, the invention relates to a method for producing a brush seal.
Type:
Grant
Filed:
September 18, 2014
Date of Patent:
October 16, 2018
Assignee:
MTU AERO ENGINES AG
Inventors:
Christoph Cernay, Stephan Prostler, Wolfgang Schmidmayr, Julian Weber, Benjamin Grobkurth, Stefan Beichl
Abstract: A brush seal system for sealing a clearance between components of a turbo engine that are movable in relation to one another, in particular of a thermal gas turbine, is disclosed. The brush seal system includes a brush seal housing, which accommodates at least one brush head of a brush seal, where the brush seal housing includes a first component having a cover plate section and a second component having a support plate section. The first component includes an axial flange forming a fish mouth seal on an end opposite the cover plate section. A thermal gas turbine having such a brush seal system is also disclosed.
Abstract: A guide vane assembly according to the invention comprises an inner ring, on whose radially outer surface an uptake channel runs in the peripheral direction; a plurality of bearing members, which are arranged in the uptake channel of the inner ring; a plurality of guide vanes, each of which is inserted by its radially inner end into one of the bearing members; and at least one sealing element for sealing at least one gap between the inner ring and at least one of the bearing members and/or between two bearing members. A turbomachine according to the invention comprises a guide vane assembly according to the invention. A method according to the invention serves for the installation of a guide vane assembly.
Abstract: The present invention relates to a component arrangement, in particular a rotor, for a turbomachine, in particular a gas turbine, having a first flange and a second flange with recesses that are distributed in a direction of distribution, in particular in the peripheral direction, wherein the second flange is fastened to the first flange, in particular detachably, by at least one fastener, which engage in the first of these recesses of the first and second flanges, wherein second ones of these recesses of the first flange, which are free of a fastener, are covered by the second flange.
Type:
Application
Filed:
March 25, 2018
Publication date:
September 27, 2018
Applicant:
MTU Aero Engines AG
Inventors:
Rudolf Stanka, Martin Fischer, Hans Zimmermann, Martin Becker, Luitpold Frey
Abstract: The present invention relates to a method for the coating of a surface of a TiAl alloy, in which at least one layer is electroplated on the surface of the TiAl alloy, wherein the surface of the TiAl alloy is subjected to an at least two-step surface treatment for the formation of a roughened surface, this treatment comprising at least one electrochemical processing and at least one electroless chemical processing.
Abstract: Disclosed is a component with a component section and a flange that is arranged at the component section for connection of the component another element. Arranged at the flange is one or a plurality of oblique flange channels, that is, channels for respectively accommodating a section of a connection element that runs obliquely to a surface portion of the component section that lies opposite to the flange. Further disclosed is a flange connection with at least one component of this kind, another component, and at least one connection element. Disclosed, in addition, is a turbomachine with a housing that is assembled from two or more components by means of such a flange connection.
Abstract: A method for the generative production of a component and a device for carrying out such a method, includes the following steps: applying a material layer with a constant layer thickness; solidifying a region of the material layer according to a component cross section; generating an eddy-current scan of the solidified region, a scan depth corresponding to a multiple of the layer thickness; determining a material characterization of the solidified region taking into consideration a previous eddy-current scan of solidified regions of lower-lying material layers; and repeating the steps until the component is assembled. An electric material characterization of each individual layer is determined using a recursive algorithm of individual measurements (monolayer by monolayer), and thus the entire component is tested step by step completely in a highly resolved manner.
Type:
Grant
Filed:
July 31, 2012
Date of Patent:
September 18, 2018
Assignee:
MTU AERO ENGINES AG
Inventors:
Joachim Bamberg, Wilhelm Satzger, Thomas Hess
Abstract: A blade/vane cascade segment for a blade/vane cascade of a turbomachine includes a stage and at least two blade/vane elements that define a blade/vane intermediate strip with an axial cascade span on the stage surface by their leading and trailing edges. A stage edge on the inflow side has a contour with a depression. In the axial direction, this depression extends at most by 10% of the cascade span into the blade/vane intermediate strip. Also provided is a corresponding stage, a blade/vane cascade, a blade/vane channel, and a turbomachine.
Type:
Application
Filed:
February 28, 2018
Publication date:
September 6, 2018
Applicant:
MTU Aero Engines AG
Inventors:
Inga Mahle, Markus Brettschneider, Fadi Maatouk
Abstract: A rotor of a turbomachine. The rotor includes at least one blade (4, 6, 8) that has a blade leaf (20) and a blade root (54, 55, 58), and a rotor base body (2), in particular a disk (2), that has an outwardly open, circumferential groove (12) for receiving the blade root (54, 55, 58). The circumferential groove (12) and the blade root (54, 55, 58) are shaped in a way that allows the blade root (54, 55, 58) to be secured in the circumferential groove (12) by the rotation of the blade (4, 6, 8) about an axis (Ar, AT).
Abstract: A method for designing a turbine having a plurality of stages disposed axially one behind the other in the direction of flow through the turbine, each stage being formed of a stationary row of a plurality of stator vanes and a rotating row of a plurality of rotor blades. The row of rotor blades of at least one of these stages has a plurality of rotor blade clusters each formed of at least two rotor blades (A1, B1; A2, B2) having different airfoil profiles and/or different distances (?A, ?B) from adjacent rotor blades following in the direction of rotation. A vane-to-blade-cluster ratio (V/(B/P)) parameter indicates the ratio of the number of stator vanes (V) to the quotient (B/P) of the number of rotor blades (B) of the stage divided by the number of rotor blades per rotor blade cluster (P).
Abstract: The present invention provides a split inner ring for an adjustable guide blade arrangement, having a ring segment arrangement with at least two ring segments (1, 2) and a bearing bush arrangement with at least one bearing bush (5) for mounting an adjustable guide blade (4) of the guide blade arrangement, in which a ring segment and another ring segment of the ring segment arrangement can be joined together by the bearing bush arrangement.
Abstract: The invention relates to a method for producing, repairing and/or exchanging a housing, in particular an engine housing of an aircraft engine, comprising at least two shells, between which a structural part is formed, wherein the method comprises the following step: layer-by-layer construction of the at least two shells jointly with the structural part by means of a generative manufacturing system, wherein the structural part comprises at least one porous structure and/or honeycomb structure. The invention relates furthermore to such a housing.
Abstract: A gas turbine compressor including a guide vane (1), a moving vane (2), in particular downstream, and a bleed channel (3) having an upstream channel wall (3.1), which merges into an annular space (5), an axially opposite downstream channel wall (3.2) having an inlet edge (3.3), which is rounded in particular, and a bleed channel outlet, the downstream channel wall enclosing with an axis of rotation of the compressor a first angle (?) which increases in the flow direction (x).
Abstract: The invention relates to a method for the determination, at least in regions, of a contour of at least one additively manufactured component layer, in which a contour line of the component layer is traveled over, at least in regions, by a laser beam, and a time exposure of the traveled contour line is produced by a camera system. The invention further relates to a device for the determination, at least in regions, of a contour of at least one additively manufactured component layer. For this purpose, the device comprises at least one laser system, by which a contour line of the component layer can be traveled over, at least in regions, by a laser beam, and a camera system, which is designed to produce a time exposure of the contour line traveled over by the laser beam.
Abstract: A method for operating a driving system having an internal combustion engine and an exhaust gas purifying device through which exhaust gas from the internal combustion engine flows in order to be purified. The exhaust gas purifying device has at least one catalyst element for catalytic conversion of nitrogen monoxide into nitrogen dioxide at a determined conversion rate. In order to compensate for an age related decrease in the conversion rate of the catalyst element the nitrogen monoxide emission from the internal combustion engine and/or the exhaust gas temperature before the catalyst element are adjusted as a function of the current conversion rate and/or the age of the catalyst element so that the nitrogen dioxide concentration after the catalyst element is greater than or equal to a minimum concentration and/or that the molar ratio between nitrogen monoxide and nitrogen dioxide after the catalyst element corresponds to a predetermined ratio.
Type:
Grant
Filed:
April 16, 2014
Date of Patent:
August 28, 2018
Assignee:
MTU FRIEDRICHSHAFEN GMBH
Inventors:
Guido Schäffner, Andrea Prospero, Günter Zitzler, Tim Späder
Abstract: The present invention relates to a TiAl alloy for use at high temperatures having the main constituents titanium and aluminum and having a proportion of aluminum of greater than or equal to 30 at. % and a matrix composed of ? phase and precipitates of ? phase embedded in the matrix, with the ? phase and the ? phase together making up at least 55% by volume of the microstructure, and also a process for the production thereof and the use thereof.
Abstract: A guide vane (300) for a turbomachine, having a sealing device (27, 27?) at the radially inner end region of the guide vane (300) for sealing leakage flows (25) between the guide vane (300) and an inner ring (7) joined thereto. The sealing device (27, 27?) is movably configured relative to the guide vane (300). The sealing device (27, 27?) is positionable in at least one open or in a closed configuration for sealing the leakage flows (25). Also, a guide vane (100), as well as a turbomachine.
Abstract: The present invention relates to a turbomachine blade (100; 200) with a base element, which has a blade part (1) for flow diversion and a blade root (2), a first guide (110; 210), fixed on the base element, in which a first element (111; 211) is movably guided, and a second guide (120; 220), fixed on the base element, in which a second element (121; 221) is movably guided, wherein a dynamic of the first element in the first guide and a dynamic of the second element in the second guide are designed differently, and the first guide (110; 210) is arranged in a half, nearer to the base root, of a radial height (H) of the base element, and the second guide is arranged in a half, more remote from the blade root, of the radial height of the base element.
Type:
Grant
Filed:
July 16, 2015
Date of Patent:
August 28, 2018
Assignee:
MTU AERO ENGINES AG
Inventors:
Frank Stiehler, Martin Pernleitner, Andreas Hartung
Abstract: A guide vane for a turbomachine axially pivotably coupled to a radially outwardly disposed flow-limiting wall and to a radially inwardly disposed inner ring of the turbomachine; and a trailing edge gap being formed between an upper trailing edge of the guide vane and the flow-limiting wall and/or between a lower trailing edge of the guide vane and the inner ring; the upper trailing edge and/or the lower trailing edge of the guide vane having at least one air outlet opening for an air outflow for forming an air curtain for at least partially sealing the trailing edge gap in the area of the upper trailing edge and/or the lower trailing edge in the area of the lower trailing edge. Also, a guide vane cascade, as well as a method for manufacturing a guide vane or a guide vane cascade.
Abstract: A component system of a turbine engine including a first component segment and a second component segment configurable in a ring segment shape, so that at least one abutment surface of the first component segment and an abutment surface of the second component segment abut against each other; together, the first component segment and the second component segment including at least three overlapping elements for sealing a gap between the abutment surfaces. In the case of mutually abutting abutment surfaces, each overlapping element overlapping radially with the respective other component segment. At least two of the overlapping elements are configured on the first component segment, while at least one of the overlapping elements is configured on the second component segment. In the case of mutually abutting abutment surfaces, the overlapping element of the second component segment is axially configured between the overlapping elements of the first component segment.