Abstract: A method enhancing the taste of a food product, which includes the steps of culturing a mycelial liquid tissue culture in a media, collecting a mycelium-free portion of the mycelial liquid tissue culture, e.g., the supernatant fluid of the mycelial liquid tissue culture, and adding the collected supernatant fluid to a food product in an amount sufficient to enhance the food product's taste. The mycelial liquid tissue culture may include C. sinensis, and the culture step may be carried out for between about one and sixty days. The food products include non-nutritive sweeteners, alcoholic beverages, teas, coffees, bitter tasting foods such as cranberry, grapefruit, pomegranate, and coconut, as well as dietary supplements, food additives, pharmaceuticals, and nutraceuticals. The present invention also includes compositions of food products in combination with mycelium-free fluids.
Type:
Grant
Filed:
February 21, 2017
Date of Patent:
July 14, 2020
Assignee:
MycoTechnology, Inc.
Inventors:
James Patrick Langan, Brooks John Kelly, Huntington Davis, Bhupendra Kumar Soni
Abstract: The present invention provides a method for the preparation of a myceliated cacao bean or other agricultural product. This method includes providing cacao beans or other agricultural substrate, optionally hydrating the cacao beans or other agricultural product, and optionally pasteurizing or sterilizing the cacao beans or other agricultural substrate to provide prepared cacao beans or other agricultural substrate, and a step of inoculating the prepared cacao beans or other agricultural substrate with a prepared fungal component and culturing the inoculated cacao beans or other agricultural substrate to prepare the myceliated product.
Type:
Grant
Filed:
March 16, 2015
Date of Patent:
March 19, 2019
Assignee:
MycoTechnology, Inc.
Inventors:
Brooks John Kelly, James Patrick Langan
Abstract: Disclosed is a method to prepare a myceliated high-protein food product, which includes culturing a fungi an aqueous media which has a high level of plant protein, for example at least 20 g protein per 100 g dry weight with excipients, on a dry weight basis. The plant protein can include pea, rice and/or chickpea. The fungi can include comprises Lentinula spp., Agaricus spp., Pleurotus spp., Boletus spp., or Laetiporus spp. After culturing, the material is harvested by obtaining the myceliated high-protein food product via drying or concentrating. The resultant myceliated high-protein food product may have its taste, flavor, or aroma modulated, such as by increasing desirable flavors or tastes such as meaty, savory, umami, popcorn and/or by decreasing undesirable flavors such as bitterness, astringency or beaniness. Deflavoring and/or deodorizing as compared to non-myceliated control materials can also be observed. Also disclosed are myceliated high-protein food products.
Type:
Application
Filed:
July 2, 2018
Publication date:
October 25, 2018
Applicant:
Mycotechnology, Inc.
Inventors:
Bhupendra Kumar SONI, Brooks John KELLY, James Patrick LANGAN, Huntington DAVIS, Alan D. HAHN
Abstract: Disclosed is a method to prepare a myceliated high-protein food product, which includes culturing a fungi an aqueous media which has a high level of protein, for example at least 20 g protein per 100 g dry weight with excipients, on a dry weight basis. The fungi can include Pleurotus ostreatus, Pleurotus eryngii, Lepista nuda, Hericium erinaceus, Lentinula edodes, Agaricus blazeii, Laetiporus sulfureus and combinations thereof. After culturing, the material is harvested by obtaining the myceliated high-protein food product via drying or concentrating. The resultant myceliated high-protein food product may have its taste, flavor, or aroma modulated, such as by increasing desirable flavors or tastes such as meaty, savory, umami, popcorn and/or by decreasing undesirable flavors such as bitterness, astringency or beaniness. Deflavoring and/or deodorizing as compared to non-myceliated control materials can also be observed. Also disclosed are myceliated high-protein food products.
Type:
Grant
Filed:
April 14, 2017
Date of Patent:
July 3, 2018
Assignee:
Mycotechnology, Inc.
Inventors:
Bhupendra Kumar Soni, Brooks John Kelly, James Patrick Langan, Huntington Davis, Alan D. Hahn
Abstract: A method of creating an extract of myceliated agricultural product for human consumption includes providing an agricultural substrate such as rice, where the agricultural substrate has been inoculated by liquid media comprising an aliquot of culture derived from liquid-state fermentation. The culture being selected from the group consisting of Basidiomycota and Ascomycota fungi. Next, the step of enabling mycelium growth on the substrate by controlling temperature, humidity and sterility of the environment. After mycelium growth on the substrate reaches a desired stage, then the step of boiling the substrate in water and separating the water-substrate mixture into aqueous component and non-aqueous components creates an extraction.
Type:
Grant
Filed:
March 15, 2013
Date of Patent:
June 30, 2015
Assignee:
Mycotechnology, Inc.
Inventors:
Brooks John Kelly, James Patrick Langan
Abstract: An improved method for myceliating coffee includes providing raw coffee beans, preparing the raw beans for fungal myceliation by removing chlorogenic acids from the green coffee beans inoculating the prepared raw coffee beans with a fungal component to enable fungal myceliation of the green coffee beans. The method includes buffering the aqueous solution with a buffer selected from the group consisting of: sodium chloride, citric acid and ascorbic acid. In one embodiment, the method further includes myceliating the raw coffee beans under optimal conditions for mycelial growth, and preparing the myceliated coffee beans for roasting by washing the myceliated coffee beans to remove undesired metabolites produced by the fungal component. The myceliated coffee beans are roasted. Roasted coffee beans are then ground and brewed into a coffee beverage.
Type:
Application
Filed:
September 6, 2013
Publication date:
June 19, 2014
Applicant:
Mycotechnology, Inc.
Inventors:
Brooks John Kelly, Quinn Kelly, Jim Langan
Abstract: The present invention provides an aqueous extract of a myceliated agricultural substrate for use as a nutraceutical or food composition for human consumption comprising at least one small molecule compound, wherein mycelia is grown on an agricultural substrate by inoculating the agricultural substrate with a pure strain of a fungal culture selected from the group comprising Basidiomycota and Ascomycota derived from a liquid fermentation, under optimum growth conditions. The present invention further provides methods of formation of an aqueous extract and nutraceutical or food compositions obtained from the extract. The aqueous extract and the nutraceutical compositions obtained from the extract thereof have neuroprotective and neuroregenerative properties amongst many other therapeutic properties.
Type:
Application
Filed:
May 1, 2013
Publication date:
March 6, 2014
Applicant:
Mycotechnology, Inc.
Inventors:
Brooks John Kelly, Jonathan Freestone Phillips, Jim Langan
Abstract: The present invention relates to a method of myceliation of agricultural substrates for producing functional foods with health benefits, wherein the method comprises of inoculating an agricultural substrate with one or more species of pure fungal culture comprising Basidiomycota and Ascomycota derived from liquid state fermentation, enabling mycelial growth on the agricultural substrate by controlling growth conditions and harvesting of a myceliated agricultural product after the mycelial growth reaches a desired stage. The present invention further provides a myceliated agricultural product enriched with nutrients, processed into a nutraceutical or functional food for human consumption.
Type:
Application
Filed:
April 9, 2013
Publication date:
March 6, 2014
Applicant:
Mycotechnology, Inc.
Inventors:
Brooks John Kelly, Jonathan Freestone Phillips, Jim Langan