Patents Assigned to Mycoworks, Inc.
  • Patent number: 11974524
    Abstract: A mycelium growth bed for growing a solid substrate-bound mycelium through which the mycelium composite is easily and readily removed. This is achieved through the use of a perforation layer embedded between the mycelium substrate and the mycelium composite so as to create a uniform structural weakness and thereby enhancing harvesting abilities of the ex-substrate mycelium via a greatly reduced and uniform tear strength. The perforation layer, through which the mycelium grows, allows for the gated and controlled extrusion of a matrix of colonial cells that may be easily and uniformly delaminated from the underlying mycelium substrate.
    Type: Grant
    Filed: June 15, 2023
    Date of Patent: May 7, 2024
    Assignee: MycoWorks, Inc.
    Inventors: Philip Ross, Matthew L. Scullin, Nicholas Wenner, Jordan Chase, Quinn Miller, Ryan Salditos, Phil McGaughy
  • Patent number: 11937553
    Abstract: A monokaryotic mycelium sheet producing system for creating a sheet of monokaryotic mycelial material. The mycelium sheet producing system includes a culture unit, a spore stock unit, a plating unit, a section unit, a sub-plating unit, an expanding unit and a colonization unit. The culture unit prepares a monokaryon culture. The spore stock unit grows a plurality of fruit bodies in sterile laboratory conditions to create a spore stock. The plating unit performs a peroxide-based spore rescue and a plating process. The section unit is adaptable to section robust hyphae. The sub-plating unit sub-plates and expands the robust hyphae onto a spawn grain master. The expanding unit subsequently expands the spawn grain master into appropriate production of spawn volume. The colonization unit is adaptable to perform a subsequent colonization of mycelium substrate thereby creating a substantially defect free sheet of mycelium.
    Type: Grant
    Filed: February 9, 2023
    Date of Patent: March 26, 2024
    Assignee: MycoWorks, Inc.
    Inventor: Philip Ross
  • Patent number: 11807983
    Abstract: An abrasion resistant finish for a fungal material, the finishing comprising an optimum quantity biodegradable polylactic acid plastic (PLA) dispersed in water to produce a PLA mixture. When the PLA mixture is applied to the fungal material, water carries the PLA deeply into the matrix of the fungal hyphae to a depth at least 2 N/10 mm or 1% of the thickness of the fungal material, whichever is greater. The finish fortifies the hyphal structure as the water evaporates and creates a PLA coating on the fungal material with improved abrasion resistance and water resistance.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: November 7, 2023
    Assignee: MycoWorks, Inc.
    Inventors: Matt Scullin, Nicholas Wenner, Jordan Chase, Quinn Miller, Philip Ross
  • Patent number: 11678617
    Abstract: A mycelium growth bed for growing a solid substrate-bound mycelium through which the mycelium composite is easily and readily removed. This is achieved through the use of a perforation layer embedded between the mycelium substrate and the mycelium composite so as to create a uniform structural weakness and thereby enhancing harvesting abilities of the ex-substrate mycelium via a greatly reduced and uniform tear strength. The perforation layer, through which the mycelium grows, allows for the gated and controlled extrusion of a matrix of colonial cells that may be easily and uniformly delaminated from the underlying mycelium substrate.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: June 20, 2023
    Assignee: MycoWorks, Inc.
    Inventors: Philip Ross, Matthew L Scullin, Nicholas Wenner, Jordan Chase, Quinn Miller, Ryan Salditos, Phil McGaughy
  • Patent number: 11576311
    Abstract: A monokaryotic mycelium sheet producing system for creating a sheet of monokaryotic mycelial material. The mycelium sheet producing system includes a culture unit, a spore stock unit, a plating unit, a section unit, a sub-plating unit, an expanding unit and a colonization unit. The culture unit prepares a monokaryon culture. The spore stock unit grows a plurality of fruit bodies in sterile laboratory conditions to create a spore stock. The plating unit performs a peroxide-based spore rescue and a plating process. The section unit is adaptable to section robust hyphae. The sub-plating unit sub-plates and expands the robust hyphae onto a spawn grain master. The expanding unit subsequently expands the spawn grain master into appropriate production of spawn volume. The colonization unit is adaptable to perform a subsequent colonization of mycelium substrate thereby creating a substantially defect free sheet of mycelium.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: February 14, 2023
    Assignee: MycoWorks, Inc.
    Inventor: Philip Ross
  • Patent number: 11564362
    Abstract: A mycelium growth bed for optimal production of pure mycelium or a pure mycelium composite with controlled or predictable properties, the bed comprising a tray, a conveying platform, a permeable membrane, a substrate, and a porous material. The permeable membrane is positioned on the conveying platform within the tray. The substrate is positioned on the permeable membrane and the porous material is positioned on top of the substrate. The system provides a configuration wherein the CO2 concentration is held above 3%, the relative humidity is held above 40% and the O2 concentration is held below 20% in steady state conditions to produce leather-like mycelium without fruiting bodies.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: January 31, 2023
    Assignee: MycoWorks, Inc.
    Inventors: Philip Ross, Matt Scullin, Nicholas Wenner, Jordan Chase, Quinn Miller, Ryan Salditos, Phil McGaughy
  • Patent number: 11310968
    Abstract: A system for growing fungi, the system comprising a nutritive vehicle, a porous material, an administrable space, fungal tissue comprising fungal hyphae having a growth pattern, the fungal tissue connecting said nutritive vehicle to said porous material to said administrable space, wherein the fungal tissue within said space defines at least one successive fungal material layer; and a chemically or physically altered separated portion of fungal material, the separated portion separated from said fungal tissue.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: April 26, 2022
    Assignee: MycoWorks, Inc.
    Inventors: Philip Ross, Nicholas Wenner, Caitlin Moorleghen
  • Patent number: 11277981
    Abstract: A monokaryotic mycelium sheet producing system for creating a sheet of monokaryotic mycelial material. The mycelium sheet producing system includes a culture unit, a spore stock unit, a plating unit, a section unit, a sub-plating unit, an expanding unit and a colonization unit. The culture unit prepares a monokaryon culture. The spore stock unit grows a plurality of fruit bodies in sterile laboratory conditions to create a spore stock. The plating unit performs a peroxide-based spore rescue and a plating process. The section unit is adaptable to section robust hyphae. The sub-plating unit sub-plates and expands the robust hyphae onto a spawn grain master. The expanding unit subsequently expands the spawn grain master into appropriate production of spawn volume. The colonization unit is adaptable to perform a subsequent colonization of mycelium substrate thereby creating a substantially defect free sheet of mycelium.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: March 22, 2022
    Assignee: MycoWorks, Inc.
    Inventor: Philip Ross
  • Patent number: 11032982
    Abstract: A mycelium growth bed for optimal production of pure mycelium or a pure mycelium composite with controlled or predictable properties, the bed comprising a tray, a conveying platform, a permeable membrane, a substrate, a porous material and a lid. The permeable membrane is positioned on the conveying platform within the tray. The substrate is positioned on the permeable membrane and the porous material is positioned on top of the substrate. The system provides a configuration having a substrate weight to surrounding space volume ratio between 0.5 and 5.0 g/cc, an air volume (surrounding space) to substrate volume between 0.01 and 1.0, and an air volume (surrounding space) to substrate area is between 0.5 and 5 cc/cm, wherein the CO2 concentration is held above 3%, the relative humidity is held above 40% and the O2 concentration is held below 20% in steady state conditions to produce leather-like mycelium without fruiting bodies.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: June 15, 2021
    Assignee: MycoWorks, Inc.
    Inventors: Philip Ross, Matt Scullin, Nicholas Wenner, Jordan Chase, Quinn Miller, Ryan Saltidos, Phil McGaughy
  • Patent number: 11013189
    Abstract: A system for growing fungi, the system comprising a nutritive vehicle, a porous material, an administrable space, fungal tissue comprising fungal hyphae having a growth pattern, the fungal tissue connecting said nutritive vehicle to said porous material to said administrable space, wherein the fungal tissue within said space defines at least one successive fungal material layer; and a chemically or physically altered separated portion of fungal material, the separated portion separated from said fungal tissue.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: May 25, 2021
    Assignee: MycoWorks, Inc.
    Inventors: Philip Ross, Nicholas Wenner, Caitlin Moorleghen
  • Patent number: 10947496
    Abstract: A molding system for forming an inoculated lignocellulose based medium into a fungal molded shape, the molding system comprising a vessel within which environmental conditions are regulated, the vessel comprising an inoculated lignocellulose based medium capable of supporting growth of saprophytic fungi without any secondary organisms displacing the process through infection a secondary organic material layered near the top and bottom of the inoculated lignocellulose based medium, a hard mold containing the flexible vessel; and a compressive system for applying a primary compressive pressure of at least 10 PSI to the lignocellulose based medium such that it takes on a fungal molded shape.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: March 16, 2021
    Assignee: MycoWorks, Inc.
    Inventor: Philip Ross
  • Patent number: 10842089
    Abstract: A fungal growth structure comprising a nutritive vehicle, a porous material, an administrable space. fungal tissue comprising fungal hyphae having a growth pattern, the fungal tissue connecting said nutritive vehicle to said porous material to said administrable space, wherein the fungal tissue within said space defines at least one successive fungal material layer; and a chemically or physically altered separated portion of fungal material, the separated portion separated from said fungal tissue.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: November 24, 2020
    Assignee: MycoWorks, Inc.
    Inventors: Philip Ross, Nicholas Wenner, Caitlin Moorleghen
  • Patent number: 10687482
    Abstract: A method of forming fungal materials and fungal objects from those fungal materials, the method comprising the steps of growing a first fungal tissue in contact with a nutritive vehicle; supplying a porous material in contact with said first fungal tissue; directing growth of said fungal tissue through said porous material such that a portion of said fungal tissue comprises a first fungal material having first fungal hyphae; optionally incorporating composite material; directing a change in the composition or growth pattern of at least some of said first fungal hyphae; separating at least a portion of the first fungal material from said nutritive vehicle; obtaining a second fungal material having second fungal hyphae; and forming a fungal object by encouraging fused growth between said first fungal material and said second fungal material and optionally incorporating composite material.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: June 23, 2020
    Assignee: Mycoworks, Inc.
    Inventors: Philip Ross, Nicholas Wenner, Caitlin Moorleghen
  • Patent number: 9951307
    Abstract: A method for growing organically derived building materials in the form of a moldable substrate that can be engineered to serve a wide range of manufacturing and construction applications is presented. In particular, the embodiments consider a plurality of fungal molded shapes preferably grown from fungal inoculum and mechanically compressed at least once during the growing process as well as integration of structure support members to the fungal structure. The present invention provides a fungal substrate which could be molded, and easily and cheaply preprocessed to precise geometric specifications. The organically derived building materials also incorporate layers of structural reinforcements to improve load bearing and other structural capacities.
    Type: Grant
    Filed: August 7, 2016
    Date of Patent: April 24, 2018
    Assignee: Mycoworks, Inc.
    Inventor: Philip Ross
  • Patent number: 9410116
    Abstract: A method for growing organically derived building materials in the form of a moldable substrate that can be engineered to serve a wide range of manufacturing and construction applications is presented. In particular, the embodiments consider a plurality of fungal molded shapes preferably grown from fungal inoculum and mechanically compressed at least once during the growing process as well as integration of structure support members to the fungal structure. The present invention provides a fungal substrate which could be molded, and easily and cheaply preprocessed to precise geometric specifications. The organically derived building materials also incorporate layers of structural reinforcements to improve load bearing and other structural capacities.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: August 9, 2016
    Assignee: Mycoworks, Inc.
    Inventor: Philip Ross